Skip to main content
Log in

Effect of oxygen content on reliability of Au-20Sn solder joints for the chip-level package

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In soldering process, oxygen trapped in solder often leads to reliability issues. In order to determine basic mechanisms, five commercial Au-20Sn solder preforms with different oxygen content were studied. The XPS results revealed that the surface oxides on Au-20Sn solder are composed of SnO2 and SnO, and the ratio of soldering area suffered an obvious decline from 95.2 to 69.8% with the oxygen content increase from 16 to 69 ppm. The presence of oxygen will generate two types of voids, microvoids and macrovoids, forming in the solder joints. The shear test indicated that as the ratio of soldering area increased, the shear strength of solder joints continued to increase. During the fracture process, the pores and cracks appeared on the fracture surface when the oxygen content reached 42 ppm. In addition, this paper focus on investigating the aging time effect on defect evolution and shear strength of Au-20Sn solder joints at various oxygen levels. With the extension of aging time, the shear strength of higher oxygen content solder joints decreases more seriously. Considering the microstructure as well as the shear strength of solder joints, the critical oxygen content is preferably less than 28 ppm when Au–20Sn solders are used for fluxless bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Z.X. Zhu, C.C. Li, L.L. Liao, C.K. Liu, C.R. Kao, J. Alloys Compd. 671, 340 (2016)

    Article  CAS  Google Scholar 

  2. C. Durand, M. Klingler, M. Bigerelle, D. Coutellier, Microelectron. Reliab. 66, 122 (2016)

    Article  CAS  Google Scholar 

  3. B.S. Lee, Y.H. Ko, J.H. Bang, C.W. Lee, S. Yoo, J.K. Kim, J.W. Yoon, Microelectron. Reliab. 71, 119 (2017)

    Article  CAS  Google Scholar 

  4. D. Bušek, K. Dušek, D. Růžička, M. Plaček, P. Mach, J. Urbánek, J. Starý, Microelectron. Reliab. 60, 135 (2016)

    Article  Google Scholar 

  5. V. Verdingovas, M.S. Jellesen, R. Ambat, J. Electron. Mater. 44, 1116 (2015)

    Article  CAS  Google Scholar 

  6. D.X. Xu, Y.P. Lei, Z.D. Xia, F. Guo, Y.W. Shi, J. Electron. Mater. 37, 125 (2008)

    Article  CAS  Google Scholar 

  7. M.S. Jellesen, D. Minzari, U. Rathinavel, P. Møller, R. Ambat, Eng. Fail. Anal. 17, 1263 (2010)

    Article  CAS  Google Scholar 

  8. J.W. Elmer, R.P. Mulay, Scripta Mater. 120, 14 (2016)

    Article  CAS  Google Scholar 

  9. G.S. Zhang, H.Y. Jing, L.Y. Xu, J. Wei, Y.D. Han, J. Alloys Compd. 476, 138 (2009)

    Article  CAS  Google Scholar 

  10. H. Chung, C. Chen, C. Lin, C. Chen et al., J. Alloys Compd. 485, 219 (2009)

    Article  CAS  Google Scholar 

  11. J.W. Yoon, H.S. Chun, S.B. Jung, Mater. Sci. Eng. A 473, 119 (2008)

    Article  Google Scholar 

  12. B.S. Lee, C.W. Lee, J.W. Yoon, Surf. Interface. Anal 48, 493 (2016)

    Article  CAS  Google Scholar 

  13. P.J. Wang, J.S. Kim, C.C. Lee, J. Electron. Mater. 38, 2106 (2009)

    Article  CAS  Google Scholar 

  14. J.A. Taylor, S.M. Merchant, D.L. Perry, J. Appl. Phys. 78, 5356 (1995)

    Article  CAS  Google Scholar 

  15. J.F. Kuhmann, A. Preuss, B. Adolphi, K. Maly, T. Wirth, W. Oesterle, W. Pittroff, G. Weyer, M. Fanciulli, IEEE Trans. Compon. Packag. Manuf. Technol. C 21, 134 (1998)

    Article  Google Scholar 

  16. S.S. Zhang, Y. Zhang, H. Wang, J. Alloys Compd. 487, 682 (2009)

    Article  CAS  Google Scholar 

  17. Y.T. Lai, C.Y. Liu, J. Electron. Mater. 35, 28 (2006)

    Article  CAS  Google Scholar 

  18. L. Wen, S.B. Xue, J.X. Wang, W.M. Long, S.J. Zhong, J. Mater. Sci-Mater. Electron. 30, 9489 (2019)

    Article  CAS  Google Scholar 

  19. N. Birks, G.H. Meier, F.S. Pettit, Corrosion. 63, 104 (2007)

    Google Scholar 

  20. X. Luo, W. Du, X.Z. Lu, T. Yamaguchi, G. Jackson, L.L. Ye, L.J. Liu, Solder Surf. Mt. Tech. 25, 39 (2013)

    Article  Google Scholar 

  21. T. Farrell, Met. Sci. 10, 87 (1976)

    Article  CAS  Google Scholar 

  22. J. Peng, R.C. Wang, M. Wang, H.S. Liu, J. Electron. Mater. 46, 2021 (2017)

    Article  CAS  Google Scholar 

  23. J.W. Yoon, H.S. Chun, S.B. Jung, J. Mater. Res. 22, 1219 (2007)

    Article  CAS  Google Scholar 

  24. F. Arabi, L. Theolier, D. Martineaub, J.-Y. Deletage, M. Medina, E. Woirgard, Microelectron. Reliab. 64, 409 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by National Natural Science Foundation of China (Grant No. 51675269), the State Key Laboratory of Advanced Brazing Filler Metals & Technology (Zhengzhou Research Institute of Mechanical Engineering), China (Grant No. SKLABFMT201704), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songbai Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Xue, S., Liu, H. et al. Effect of oxygen content on reliability of Au-20Sn solder joints for the chip-level package. J Mater Sci: Mater Electron 31, 1411–1420 (2020). https://doi.org/10.1007/s10854-019-02655-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02655-5

Navigation