Skip to main content
Log in

Thermal stability and electrical properties of BiFe1−xMxO3 (M = Al3+, Ga3+) ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BiFeO3 (BFO) is a fascinating multiferroic material, exhibiting ferroelectric and G-type antiferromagnetic characteristics simultaneously. In this work, non-magnetic Al3+ and Ga3+ doped BFO (BFAO and BFGO) ceramics were synthesized via sol–gel and conventional sintering methods. Structural, thermal stability and electrical properties of samples were analyzed in detail. X-ray diffraction (XRD) patterns of powder and ceramic samples demonstrated efficient crystallization, consisting of rhombohedral structures with R3c space group for small amounts of added dopant. Thermal analysis exhibited that BFO decomposes into Bi25FeO39 and Bi2Fe4O9 at 950 °C. It is found that Al3+ and Ga3+ doping readily contribute to decomposition, as supported by calculations from first-principles. BiAlO3 and BiGaO3 are unstable and would spontaneously decompose, if they could be synthesized using ordinary technology. As a result, decomposition temperatures of doped powders decreased to ~ 680 °C. Dielectric behavior can be explained through the Maxwell–Wanger model and Koop’s theory. Dielectric loss decreased with increasing substitution. Leakage current density of doped ceramics became 2–3 orders of magnitude lower than that of BFO ceramic, improving performance and championing applications of modified BFO in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Trolier-Mckinstry, P. Muralt, J. Electroceram. 12, 7–17 (2004)

    Article  Google Scholar 

  2. D. Matthew, J. Electroceram. 19, 25–47 (2007)

    Article  Google Scholar 

  3. H. Wang, B. Wang, Q.K. Li, Z.Y. Zhu, R. Wang, C.H. Woo, Phys. Rev. B 75, 1–9 (2007)

    Google Scholar 

  4. C.L. Li, H. Wang, B. Wang, R. Wang, Appl. Phys. Lett. 91, 071902 (2007)

    Article  Google Scholar 

  5. J.M. Moreau, C. Michel, R. Gerson, W.J. James, J. Phys. Chem. Solids 32, 1315–1320 (1971)

    Article  Google Scholar 

  6. J.T. Heron, D.G. Schlom, R. Ramesh, Appl. Phys. Rev. 1, 021303 (2014)

    Article  Google Scholar 

  7. H. Béa, M. Gajek, M. Bibes, A. Barthélémy, J. Phys.: Condens. Matter 20, 434221 (2008)

    Google Scholar 

  8. C. Binek, B. Doudin, J. Phys.: Condens. Matter 17, L39–L44 (2005)

    Google Scholar 

  9. A. Azam, A. Jawad, A.S. Ahmed, M. Chaman, A.H. Naqvi, J. Alloys Compd. 509, 2909–2913 (2011)

    Article  Google Scholar 

  10. A. Jawad, A.S. Ahmed, S.S.Z. Ashraf, M. Chaman, A. Azam, J. Alloys Compd. 530, 63–70 (2012)

    Article  Google Scholar 

  11. B.P. Reddy, M.C. Sekhar, B.P. Prakash, Y. Suh, S.H. Park, Ceram. Int. 44, 19512–19521 (2018)

    Article  Google Scholar 

  12. A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, M. Pal, J. Mater. Chem. C 2, 5885–5891 (2014)

    Article  Google Scholar 

  13. J.S. Park, Y.J. Yoo, J.S. Hwang, J.-H. Kang, B.W. Lee, Y.P. Lee, J. Appl. Phys. 115, 013904 (2014)

    Article  Google Scholar 

  14. F. Yan, M.O. Lai, L. Lu, T.J. Zhu, J. Phys. Chem. C 114, 6994–6998 (2010)

    Article  Google Scholar 

  15. A. Kumar, K.L. Yadav, Mater. Sci. Eng. B 176, 227–230 (2011)

    Article  Google Scholar 

  16. A.A. Belik, T. Wuernisha, T. Kamiyama, K. Mori, M. Maie, T. Nagai, Y. Matsui, E. Takayama-Muromachi, Chem. Mater. 18, 133–139 (2006)

    Article  Google Scholar 

  17. H. Wang, B. Wang, R. Wang, Q.K. Li, Physica B 390, 96–100 (2007)

    Article  Google Scholar 

  18. P. Suresh, P.D. Babu, S. Srinath, Ceram. Int. 42, 4176–4184 (2016)

    Article  Google Scholar 

  19. A.A. Belik, S.Y. Stefanovich, B.I. Lazoryak, E. Takayama-Muromachi, Chem. Mater. 18, 1964–1968 (2006)

    Article  Google Scholar 

  20. A.A. Belik, S. Iikubo, K. Kodama, N. Igawa, S.I. Shamoto, M. Maie, T. Nagai, Y. Matsui, Y.S. Stefanovich, B.I. Lazoryak, E. Takayama-Muromachi, J. Am. Chem. Soc. 128, 706–707 (2006)

    Article  Google Scholar 

  21. H. Yusa, A.A. Belik, E. Takayama-Muromachi, N. Hirao, Y. Ohishi, Phys. Rev. B 80, 214103 (2009)

    Article  Google Scholar 

  22. A.A. Belik, D.A. Rusakov, T. Furubayashi, E. Takayama-Muromachi, Chem. Mater. 43, 3056–3064 (2012)

    Article  Google Scholar 

  23. V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, L. Jian, A.L. Kholkin, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, M. Maglione, J. Appl. Phys. 103, 024105 (2008)

    Article  Google Scholar 

  24. I.K. Hong, H.S. Han, C.H. Yoon, H.N. Ji, W.P. Tai, J.S. Lee, J. Intell. Mater. Syst. Struct. 24, 1343–1349 (2012)

    Article  Google Scholar 

  25. M. Sakar, S. Balakumar, P. Saravanan, S.N. Jaisankar, Mater. Des. 94, 487–495 (2016)

    Article  Google Scholar 

  26. S.V. Vijayasundaram, G. Suresh, R. Kanagadurai, Appl. Phys. A 121, 681–688 (2015)

    Article  Google Scholar 

  27. P. Chen, S.H. Wu, P. Li, J.W. Zhai, B. Shen, Inorg. Chem. Front. 5, 2300–2305 (2018)

    Article  Google Scholar 

  28. J.Q. Dai, J.W. Xu, J.H. Zhu, Appl. Surf. Sci. 392, 135–143 (2017)

    Article  Google Scholar 

  29. J.Q. Dai, J.W. Xu, J.H. Zhu, ACS Appl. Mater. Interfaces 9, 3168–3177 (2017)

    Article  Google Scholar 

  30. E. Heifets, E.A. Kotomin, A.A. Bagaturyants, J. Maier, J. Phys. Chem. Lett. 6, 2847–2851 (2015)

    Article  Google Scholar 

  31. G. Makov, M.C. Payne, Phys. Rev. B 51, 4014–4022 (1995)

    Article  Google Scholar 

  32. R.C. Weast, M.J. Astle, W.H. Beyer, CRC Handbook of Chemistry And Physics, 69th edn. (Florida CRC Press, Boca Raton, 1987), pp. 156–157, 1236–1248, 1253–1259, 1745–1747

    Google Scholar 

  33. J.H. Zhu, J.Q. Dai, J.W. Xu, X.Y. Li, Ceram. Int. 44, 9215–9220 (2018)

    Article  Google Scholar 

  34. S. Chandel, P. Thakur, S.S. Thakur, V. Kanwar, M. Tomar, V. Gupta, A. Thakur, Ceram. Int. 44, 4711–4718 (2018)

    Article  Google Scholar 

  35. Z. Dai, Y. Akishige, J. Phys. D Appl. Phys. 43, 445403 (2010)

    Article  Google Scholar 

  36. G.W. Pabst, L.W. Martin, Y.-H. Chu, R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007)

    Article  Google Scholar 

  37. L.F. Zhu, B.P. Zhang, J.Q. Duan, B.W. Xun, N. Wang, Y.C. Tang, G.L. Zhao, J. Eur. Ceram. Soc. 38, 3463–3471 (2018)

    Article  Google Scholar 

  38. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, Phys. Lett. 84, 1731–1733 (2004)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51762030 and 51462019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Qing Dai.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, TF., Dai, JQ., Zhu, JH. et al. Thermal stability and electrical properties of BiFe1−xMxO3 (M = Al3+, Ga3+) ceramics. J Mater Sci: Mater Electron 30, 3647–3654 (2019). https://doi.org/10.1007/s10854-018-00644-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-00644-8

Navigation