Skip to main content
Log in

Effect of the carrier gas on morphological, optical and electrical properties of SnO2 nanostructures prepared by vapor transport

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The aim of the study was to explore the effects of carrier gas on the properties of SnO2 nanostructures grown by vapor transport method for possible optoelectronic applications. Nanostructures of SnO2 were synthesized via vapor transport method using Ar plus O2 and N2 plus O2 gas mixtures. It was found that the carrier gas (Ar or N2) has great influences on the properties of the resulting SnO2 nanostructures. Tetragonal single phase SnO2 with nanowires (NWs) morphologies was obtained for Ar/O2. The diameters of the NWs ranged from 10 to 162 nm and the lengths exceed 5 µm. While tetragonal single phase SnO2 with nanoparticles morphologies (diameters of 42–173 nm) was obtained for N2/O2. The calculated optical band gap values were 3.81 and 2.95 eV for samples prepared with Ar/O2 and N2/O2, respectively. The conduction mechanism in the samples was found to be thermally activated. Single activation energy of 0.49 eV was evaluated for the sample prepared in Ar/O2, while two activation energies (EAL = 1.48 eV and EAh = 0.83 eV) were obtained for the sample prepared with N2/O2. The photoluminescence emission (intensity and shape) depended on the carrier gas. The observed emission peaks were assigned to the oxygen vacancies and the oxygen related defects. The obtained results may find applications in optoelectronics such as light emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Intrater, A review of: synthesis, properties, and applications of oxide nanomaterials. Mater. Manuf. Process. 23 114–115 (2007)

    Article  Google Scholar 

  2. J. Jeevanandam, Y.S. Chan, M.K. Danquah, Chem. Biol. Eng. Rev. 3, 55–67 (2016)

    Google Scholar 

  3. K.S. Suganthi, K.S. Rajan, Renew. Sustain. Energ. Rev. 76, 226–255 (2017)

    Article  Google Scholar 

  4. S.H. Mohamed, J. Alloys Compd. 510, 119–124 (2012)

    Article  Google Scholar 

  5. M. Shojaee, Sh Nasresfahani, M.H. Sheikhi, Sens. Actuators B Chem. 254, 457–467 (2018)

    Article  Google Scholar 

  6. V.K. Gupta, R. Saravanan, S. Agarwal, F. Gracia, M.M. Khan, R.V. Mangalaraja, J. Mol. Liq. 232, 423–430 (2017)

    Article  Google Scholar 

  7. M.V. Reddy, B.V.R. Chowdar, L.Y. Tse, W K.Z. Bruce, Mater. Lett. 138, 231–234 (2015)

    Article  Google Scholar 

  8. J.P. Cheng, J. Wang, Q.Q. Li, H.G. Liu, Y. Li, J. Ind. Eng. Chem. 44, 1–22 (2016)

    Article  Google Scholar 

  9. Q. Wali, A. Fakharuddin, R. Jose, J. Power Sources 293, 1039–1052 (2015)

    Article  Google Scholar 

  10. B. Ling, X.W. Sun, J.L. Zhao, C. Ke, S.T. Tan, R. Chen, H.D. Sun, Z.L. Dong, J. Phys. Chem. C 114, 18390–18395 (2010)

    Article  Google Scholar 

  11. S. Das, V. Jayaraman, Prog. Mater. Sci. 66, 112–255 (2014)

    Article  Google Scholar 

  12. A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, N. Poli, G. Sberveglieri, Thin Solid Films 515, 8356–8359 (2007)

    Article  Google Scholar 

  13. M.A. Awad, A.M. Ahmed, E.M.M. Ibrahim, Int. J. New. Hor. Phys. 2, 59–61 (2015)

    Google Scholar 

  14. P. Inchidjuy, K.-S. An, S. Pukird, Adv. Mater. Res. 677, 94–97 (2013)

    Article  Google Scholar 

  15. S.S. Pan, S. Wang, Y.X. Zhang, Y.Y. Luo, F.Y. Kong, S.C. Xu, J.M. Xu, G.H. Li, Appl. Phys. A 109, 267–271 (2012)

    Article  Google Scholar 

  16. S.H. Mohamed, O. Kappertz, J.M. Ngaruiya, T. Niemeier, R. Drese, R. Detemple, M.M. Wakkad, M. Wuttig, Phys. Stat. Sol. (a) 201, 90–102 (2004)

    Article  Google Scholar 

  17. Z.L. Wang, J. Phys. Chem. B 104, 1153 (2000)

    Article  Google Scholar 

  18. S.H. Mohamed, Philos. Mag. 91, 3598 (2011)

    Article  Google Scholar 

  19. D. Montalvo, M. Herrera, AIMS Mater. Sci. 3, 525–537 (2016)

    Article  Google Scholar 

  20. S.S. Pan, C. Ye, X.M. Teng, H.T. Fan, G.H. Li, Appl. Phys. A 85, 21–24 (2006)

    Article  Google Scholar 

  21. L. Cunha, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, Ph Goudeau, J.P. Rivière, Surf. Coat. Technol. 200, 2917 (2006)

    Article  Google Scholar 

  22. S.H. Mohamed, A.M. Abd El-Rahman, M.R. Ahmed, J. Phys. D: Appl. Phys. 40, 7057–7062 (2007)

    Article  Google Scholar 

  23. C.S. Barrett, T.B. Massalski, Structures of Metals (Pergamon, Oxford, 1980), p. 204

    Google Scholar 

  24. S. Venkataraj, H. Kittur, R. Drese, M. Wuttig, Thin Solid Films 514, 1–9 (2006)

    Article  Google Scholar 

  25. R. Sakthi Sudar Saravanan, D. Pukazhselvan, C.K. Mahadevan, J. Alloys Compd. 517, 139 (2012)

    Article  Google Scholar 

  26. J. Tauc ed. Amorphous and Liquid Semiconductors (Plenum, New York, 1974)

    Google Scholar 

  27. Y.M. Lu, J. Jiang, M. Becker, B. Kramm, L. Chen, A. Polity, Y.B. He, P.J. Klar, B.K. Meyer, Vacuum 122, 347–352 (2015)

    Article  Google Scholar 

  28. C. Di Valentin, G. Pacchioni, A. Selloni, Phys. Rev. B 70, 085116 (2004)

    Article  Google Scholar 

  29. X. Ding, F. Fang, J. Jiang, Surf. Coat. Technol. 231, 67–70 (2013)

    Article  Google Scholar 

  30. P. Suapadkorn, W. Rakreungdet, T. Jutarosaga, W. Samanjit, Adv. Mater. Res. 770, 169–172 (2013)

    Article  Google Scholar 

  31. S. Bansal, D.K. Pandya, S.C. Kashyap, D. Haranath, J. Alloys Compd. 583, 186–190 (2014)

    Article  Google Scholar 

  32. J.K. Yang, H.L. Zhao, J. Li, L.P. Zhao, J.J. Chen, B. Yu, Acta Mater. 62, 156–161 (2014)

    Article  Google Scholar 

  33. C. Kilic, A. Zunger, Phys. Rev. Lett. 88, 095501 (2002)

    Article  Google Scholar 

  34. M. Fang, X. Tan, B. Cheng, L. Zhang, J. Mater. Chem. 19, 1320–1324 (2009)

    Article  Google Scholar 

  35. Z. Chen, D. Pan, Z. Li, Z. Jiao, M. Wu, C.-H. Shek, C.M.L. Wu, J.K.L. Lai, Chem. Rev. 114, 7442–7486 (2014)

    Article  Google Scholar 

  36. G. Rahman, V.M. García-Suárez, S.C. Hong, Phys. Rev. B 78, 184404 (2008)

    Article  Google Scholar 

  37. F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, J. Phys. Chem. B 108, 8119–8123 (2004)

    Article  Google Scholar 

  38. X. Pei, F. Jin, J. Ma, T. Ning, Z. Song, Y. Tan, C. Luan, J. Lumin. 130, 1189 (2010)

    Article  Google Scholar 

  39. T.Y. Wei, C.Y. Kuo, Y.J. Hsu, S.Y. Lu, Y.C. Chang, Micropor. Mesopor. Mater. 112, 580 (2008)

    Article  Google Scholar 

  40. F. Trani, M. Causa, D. Ninno, G. Cantele, V. Barone, Phys. Rev. B 77, 245410 (2008)

    Article  Google Scholar 

  41. T.N. Soitah, C. Yang, L. Sun, Mater. Sci. Semicond. Process. 13, 125–131 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadia, N.M.A., Hasaneen, M.F., Hassan, M.A. et al. Effect of the carrier gas on morphological, optical and electrical properties of SnO2 nanostructures prepared by vapor transport. J Mater Sci: Mater Electron 29, 4155–4162 (2018). https://doi.org/10.1007/s10854-017-8360-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8360-x

Navigation