Skip to main content
Log in

Properties of SnO2 and SnO2−xNx grown on the boat walls using vapor transport method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The aim of the study was to examine the properties of SnO2 and SnO2−xNx nanowires (NWs) grown on the walls of the boat of the vapor transport system. Nanowires of SnO2 and SnO2−xNx were synthesized using Ar plus O2 and N2 plus O2 gas mixtures, respectively. The obtained chemical compositions were SnO2 and SnO1.71N0.18. In both cases, tetragonal single-phase SnO2 with nanowires morphologies were obtained by X-ray diffraction and scanning electron microscopy examinations, respectively. The NWs diameters were ranged from 150 nm to 1.6 µm, and the lengths extended to more than 400 µm for the sample grown with Ar plus O2, whereas the diameters of the NWs ranged from 30 nm to 2.1 µm and the lengths exceeded to 1 mm for the sample grown with N2 plus O2. The calculated optical band gap values were 3.54 and 3.27 eV for samples grown with Ar plus O2 and N2 plus O2, respectively. Higher photoluminescence spectrum intensity was observed for SnO2−xNx NWs. The room-temperature resistivity of SnO2−xNx was one order lower than that for SnO2 NWs and decreased upon increasing temperature, indicating a semiconducting behavior. Two activation energies were recorded for each sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.H. Mohamed, J. Alloys Compd. 510, 119–124 (2012)

    Article  Google Scholar 

  2. M. Shojaee, S. Nasresfahani, M.H. Sheikhi, Sensor. Actuat. B Chem. 254, 457–467 (2018)

    Article  Google Scholar 

  3. V.K. Gupta, R. Saravanan, F. Shilpi Agarwal, M.M. Gracia, M.M. Khan, R.V. Mangalaraja, J. Mol. Liq. 232, 423–430 (2017)

    Article  Google Scholar 

  4. M.V. Reddy, L.Y. Tse, W.K. Zhen Bruce, B.V.R. Chowdar, Mater. Lett. 138, 231–234 (2015)

    Article  Google Scholar 

  5. J.P. Cheng, J. Wang, Q.Q. Li, H.G. Liu, Y. Li, J. Ind. Eng. Chem. 44, 1–22 (2016)

    Article  Google Scholar 

  6. Q. Wali, A. Fakharuddin, R. Jose, J. Power Sour. 293, 1039–1052 (2015)

    Article  ADS  Google Scholar 

  7. B. Ling, X.W. Sun, J.L. Zhao, C. Ke, S.T. Tan, R. Chen, H.D. Sun, Z.L. Dong, J. Phys. Chem. C 114, 18390–18395 (2010)

    Article  Google Scholar 

  8. S. Das, V. Jayaraman, Prog. Mater Sci. 66, 112–255 (2014)

    Article  Google Scholar 

  9. L. Zhang, M.Y. Zeng, D.D. Wu, J. Nanosci. Nanotechnol. 20, 2259–2266 (2020)

    Article  Google Scholar 

  10. J.Y. Lin, X.L. He, A.J. Zhang, S.H. Huang, Z.X. Chen, J. Mater. Sci.: Mater. Electron. 30, 20696–20702 (2019)

    Google Scholar 

  11. S. Barth, F. Hernandez-Ramirez, J.D. Holmes, A. Romano-Rodriguez, Prog. Mater Sci. 55, 563–627 (2010)

    Article  Google Scholar 

  12. C.T. Lim, Prog. Mater Sci. 58, 705–748 (2013)

    Article  Google Scholar 

  13. A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, N. Poli, G. Sberveglieri, Thin Solid Films 515, 8356–8359 (2007)

    Article  ADS  Google Scholar 

  14. M.A. Awad, A.M. Ahmed, E.M.M. Ibrahim, Int. J. New. Hor. Phys. 2, 59–61 (2015)

    Google Scholar 

  15. P. Inchidjuy, K.-S. An, S. Pukird, Adv. Mater. Res. 677, 94–97 (2013)

    Article  Google Scholar 

  16. A. Mortezaali, R. Moradi, Sens. Actuators, B 206, 30–34 (2014)

    Article  Google Scholar 

  17. N. Kaur, E. Comini, D. Zappa, N. Poli, G. Sberveglieri, Nanotechnology 27, 205701 (2016)

    Article  ADS  Google Scholar 

  18. S.N. Fatimah Hasim, M.A.A. Hamid, R. Shamsudin, S. Radiman, A. Jalar, Adv. Mater. Res. 501, 266–270 (2012)

    Article  Google Scholar 

  19. C.M. Caskey, A. Holder, S. Shulda, S.T. Christensen, D. Diercks, C.P. Schwartz, D. Biagioni, D. Nordlund, A. Kukliansky, A. Natan, D. Prendergast, B. Orvananos, W. Sun, X. Zhang, G. Ceder, D.S. Ginley, W. Tumas, J.D. Perkins, V. Stevanovic, S. Pylypenko, S. Lany, R.M. Richards, A. Zakutayev, J. Chem. Phys. 144, 144201 (2016)

    Article  ADS  Google Scholar 

  20. S.S. Pan, S. Wang, Y.X. Zhang, Y.Y. Luo, F.Y. Kong, S.C. Xu, J.M. Xu, G.H. Li, Appl. Phys. A 109, 267–271 (2012)

    Article  ADS  Google Scholar 

  21. H. Gamsjager, T. Gajda, J. Sangster, S. K. Saxena, W. Voigt, Chemical Thermodynamics of Thorium, OECD Nuclear Energy Agency Data Bank, Eds., OECD Publications, Paris, France, (2012) vol. 12

  22. S.H. Mohamed, O. Kappertz, J.M. Ngaruiya, T. Niemeier, R. Drese, R. Detemple, M.M. Wakkad, M. Wuttig, Phys. Stat. Sol. 201, 90–102 (2004)

    Article  ADS  Google Scholar 

  23. I.M. Costa, Y.N. Colmenares, P.S. Pizani, E.R. Leite, A.J. Chiquito, Chem. Phys. Lett. 695, 125–130 (2018)

    Article  ADS  Google Scholar 

  24. L.-W. Chang, M.-W. Huang, C.-T. Li, H.C. Shih, Appl. Surf. Sci. 279, 167–170 (2013)

    Article  ADS  Google Scholar 

  25. T. Terasako, K. Kohno, M. Yagi, Thin Solid Films 644, 3–9 (2017)

    Article  ADS  Google Scholar 

  26. S.S. Pan, C. Ye, X.M. Teng, H.T. Fan, G.H. Li, Appl. Phys. A 85, 21–24 (2006)

    Article  ADS  Google Scholar 

  27. L. Cunha, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, Ph Goudeau, J.P. Rivière, Surf. Coat. Technol. 200, 2917 (2006)

    Article  Google Scholar 

  28. S.H. Mohamed, A.M. Abd El-Rahman, M.R. Ahmed, J. Phys. D Appl. Phys. 40, 7057–7062 (2007)

    Article  ADS  Google Scholar 

  29. I.L. Singer, R.G. Vardiman, Mater. Lett. 2, 150 (1983)

    Article  Google Scholar 

  30. C. Blawert, B.L. Mordike, G.A. Collins, K.T. Short, Y. Jiraskova, O. Schneeweiss, V. Perina, Surf. Coat. Technol. 128(129), 219 (2000)

    Article  Google Scholar 

  31. A.M. Abd El-Rahman, F.M. El-Hossary, T. Fitz, N.Z. Negm, F. Prokert, E. Richter, W. Möller, Surf. Coat. Technol. 183, 268 (2004)

    Article  Google Scholar 

  32. A.A. Ahmad, A.M. Alsaad, B.A. Albiss, M.-A. Al-Akhras, H.M. El-Nasser, I.A. Qattan, Phys. B Condens. Matter. 470–471, 21–32 (2015)

    Article  ADS  Google Scholar 

  33. G.H. Mhlongo, D.E. Motaung, S.S. Nkosi, H.C. Swart, G.F. Malgas, K.T. Hillie, B.W. Mwakikunga, Appl. Surf. Sci. 293, 62–70 (2014)

    Article  ADS  Google Scholar 

  34. B.R. Kumar, T.S. Rao, J. Optoelectron. Biomed. Mater. 4, 35–42 (2012)

    Google Scholar 

  35. A.M. Abd El-Rahman, F.M. El-Hossary, N.Z. Negm, F. Prokert, E. Richter, W. Möller, Nucl. Instr. Meth. B 226, 499 (2004)

    Article  ADS  Google Scholar 

  36. R. Sakthi Sudar Saravanan, D. Pukazhselvan, C.K. Mahadevan, J. Alloys Compd. 517, 139 (2012)

    Article  Google Scholar 

  37. J. Tauc (ed.), Amorphous and Liquid Semiconductors (Plenum, New York, 1974)

    Google Scholar 

  38. N.M.A. Hadia, M.F. Hasaneen, M.A. Hassan, S.H. Mohamed, J. Mater. Sci.: Mater. Electron. 29, 4155–4162 (2018)

    Google Scholar 

  39. S. Liu, J. Liu, B. Wen, W. Jiang, C. Liu, W. Ding, H. Wang, N. Wang, Z. Zhang, W. Chai, J. Mater. Sci.: Mater. Electron. 27, 6932–6938 (2016)

    Google Scholar 

  40. A.G. Habte, F.G. Hone, B. Francis, Phys. B 5801, 411832 (2020)

    Article  Google Scholar 

  41. N. Kamarulzaman, N.D. Abdul Aziz, M.F. Kasim, N.F. Chayed, R.H.Y. Subban, N. Badar, J. Solid State Chem. 277, 271–280 (2019)

    Article  ADS  Google Scholar 

  42. X. Ding, F. Fang, J. Jiang, Surf. Coat. Technol. 231, 67–70 (2013)

    Article  Google Scholar 

  43. S.H. Mohamed, A. Anders, Surf. Coat. Technol. 201, 2977–2983 (2006)

    Article  Google Scholar 

  44. C. Di Valentin, G. Pacchioni, A. Selloni, Phys. Rev. B 70, 085116 (2004)

    Article  ADS  Google Scholar 

  45. S. Park, C. Hong, J. Kang, N. Cho, C. Lee, Current. Appl. Phys. 9, S230–S233 (2009)

    Google Scholar 

  46. S.Y. Lee, Y.H. Shin, Y. Kim, S. Kim, S. Ju, J. Lumin. 131, 2565–2568 (2011)

    Article  Google Scholar 

  47. T. Tao, Q.-Y. Chen, H.-P. Hu, Y. Chen, Mater. Chem. Phys. 126, 128–132 (2011)

    Article  Google Scholar 

  48. S. Sambasivam, P.S. Maram, C.V.V. Muralee Gopi, I.M. Obaidat, Optik 202, 163596 (2020)

    Article  ADS  Google Scholar 

  49. P.S. Chowdhury, S. Saha, A. Patra, Solid State Commun. 131, 785 (2004)

    Article  ADS  Google Scholar 

  50. E.R. Leite, J.A. Varela, E. Longo, J. Mater. Sci. 27, 5325 (1992)

    Article  ADS  Google Scholar 

  51. J.A. Marley, R.C. Dockerty, Phys. Rev. 140, 304 (1965)

    Article  ADS  Google Scholar 

  52. M. Nagasawa, S. Shionoya, Jpn. J. Appl. Phys. 10, 727 (1971)

    Article  ADS  Google Scholar 

  53. S.H. Mohamed, Phil. Mag. 91, 3598–3612 (2011)

    Article  ADS  Google Scholar 

  54. E. Haye, S. Bruyere, E. Andr, P. Boulet, S. Barrata, F. Capon, P. Miska, S. Migot, C. Carteret, R. Coustel, C. Gendarme, S. Diliberto, F. Munnik, J. Alloys Compod. 724, 74–83 (2017)

    Article  Google Scholar 

  55. A. Agarwal, S.H. Chaki, S.G. Patel, D. Laksh, A. Minarayana, J. Mater. Sci.: Mater. Electron. 5, 287–290 (1994)

    Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (D-438-306-1441). The authors, therefore, gratefully acknowledge DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Mohamed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Rahman, A.M., Mohamed, S.H. Properties of SnO2 and SnO2−xNx grown on the boat walls using vapor transport method. Appl. Phys. A 126, 457 (2020). https://doi.org/10.1007/s00339-020-03642-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03642-y

Keywords

Navigation