Skip to main content
Log in

Synthesis, characterization and electrical properties of Li2NiFe2O4/NiFe2O4 nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

NiFe2O4 and Li2NiFe2O4/NiFe2O4 nanocomposite samples are prepared using citric acid and urea assisted combustion process. The prepared pristine and nanocomposite samples are characterized by using powder X-ray diffraction, Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy techniques. The effect of Li2NiFe2O4 on the Li2NiFe2O4/NiFe2O4 crystallite size and associated strain is calculated using Williamson–Hall plot. The effect of Li2NiFe2O4 on the electrical and dielectric properties of the composite samples are analyzed using AC-impedance spectroscopy. The prepared composite materials exhibit mixed electrical conduction behavior, and the conduction is due to lithium ion migration as well as electron hopping between Fe2+ and Fe3+ ions in the spinel structure. The conductivity gradually increases and attains maximum upon lithium ion inclusion in the composite. The further increment of lithium ion doping decreases the conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Zerarga, A. Bouhemadou, R. Khenata, S. Bin-Omran, Solid State Sci. 13, 1638 (2011)

    Article  CAS  Google Scholar 

  2. G. Muscas, N. Yaacoub, G. Concas, F. Sayed, R.S. Hassan, J.M. Greneche, C. Cannas, A. Musinu, V. Foglietti, S. Casciardi, C. Sangregorio, D. Peddis, Nanoscale 7, 13576 (2015)

    Article  CAS  Google Scholar 

  3. I. Prakash, P. Muralidharan, N. Nallamuthu, M. Venkateswarlu, D. Carnahan, N. Satyanarayana, J. Am. Ceram. Soc. 89(7), 2220 (2006)

    CAS  Google Scholar 

  4. A. Goldman, Modern Ferrite Technology, 2nd edn. (Springer Science & Business Media, New York, 2006), pp. 52–59

    Google Scholar 

  5. M.R. Nasrabadi, M. Behpour, A.S. Nasab, S.M. Mashkani, J. Mater. Sci.: Mater. Electron. 26, 9776 (2015)

    Google Scholar 

  6. R. Indhrajothi, I. Prakash, M. Venkateswarlu, N. Satyanarayana, New J. Chem. 39, 4601 (2015)

    Article  CAS  Google Scholar 

  7. H. Bakhshi, A. Shokuhfar, N. Vahdati, Int. J. Miner. Metall. Mater. 23, 1104 (2016)

    Article  CAS  Google Scholar 

  8. M. Kooti, S. Saiahi, H. Motamedi, J. Magn. Magn. Mater. 333, 138 (2013)

    Article  CAS  Google Scholar 

  9. T. Tago, T. Hatsuta, K. Miyajima, M. Kishida, S. Tashiro, K. Wakabayashi, J. Am. Ceram. Soc. 85(9), 2188 (2002)

    Article  CAS  Google Scholar 

  10. S. Bid, P. Sahu, S.K. Pradhan, Physica E 39, 175 (2007)

    Article  CAS  Google Scholar 

  11. M.H. Sousan, E. Hasmonay, J. Depeyrot, F.A. Tourinho, J. Bacri, E. Dubois, R. Perzynski, Yu..L. Raikher, J. Magn. Magn. Mater. 242–245, 572–574 (2002)

    Article  Google Scholar 

  12. E. Rezlescu, N. Iftimie, P.D. Popa, N. Rezlescu, J. Phys.: Conf. Ser. 15, 51 (2005)

    CAS  Google Scholar 

  13. A. Ziarati, A.S. Nasab, M.R. Nasrabadi, M.R. Ganjali, J. Rare Earths 35(4), 374 (2017)

    Article  CAS  Google Scholar 

  14. C.M. Fu, M.R. Syue, F.J. Wei, C.W. Cheng, C.S. Chou, J. Appl. Phys. 107, 09A519 (2010)

    Article  Google Scholar 

  15. A.K. Giri, K. Pellerin, W. Pongsaksawad, M. Sorescu, S.A. Majetich, IEEE Trans. Magn. 36, 3029 (2000)

    Article  CAS  Google Scholar 

  16. J. Ge, G. Fan, Y. Si, H.Y. Kim, B. Ding, S.S.A. Deyab, M.E. Newehy, J. Yu, Nanoscale 8, 2195 (2016)

    Article  CAS  Google Scholar 

  17. H. Guo, T. Li, W. Chen, L. Liu, J. Qiao, J. Zhang, Sci. Rep. 5, 13310 (2015)

    Article  Google Scholar 

  18. R. Indhrajothi, I. Prakash, M. Venkateswarlu, N. Satyanarayana, RSC Adv. 4, 44089 (2014)

    Article  CAS  Google Scholar 

  19. A.S. Nasab, H. Naderi, M.R. Nasrabadi, M.R. Ganjali, J. Mater. Sci.: Mater. Electron. 28, 8588 (2017)

    Google Scholar 

  20. H.R. Naderi, A.S. Nasab, M.R. Nasrabadi, M.R. Ganjali Appl. Surf. Sci. 423, 1025 (2017)

    Article  CAS  Google Scholar 

  21. K. Ding, J. Zhao, J. Zhou, Y. Zhao, Y. Chen, L. Liu, Li Wang, X. He, Z. Guo, Mater. Chem. Phys. 177, 31 (2016)

    Article  CAS  Google Scholar 

  22. N. Rezlescu, N. Iftimie, E. Rezlescu, C. Doroftei, P.D. Popa, Sens. Actuator B 114, 427 (2006)

    Article  CAS  Google Scholar 

  23. L. Guo, X. Shen, X. Meng, Y. Feng, J. Alloys Compd. 490, 301 (2010)

    Article  CAS  Google Scholar 

  24. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Mater. Lett. 65, 1438 (2011)

    Article  CAS  Google Scholar 

  25. F. Bensebaa, F. Zavaliche, P.L. Ecuyer, R.W. Cochrane, T. Veres, J. Colloid Interface Sci. 277, 104 (2004)

    Article  CAS  Google Scholar 

  26. T. Hirai, J. Kobayashi, I. Komasawa, Langmuir 15, 6291 (1999)

    Article  CAS  Google Scholar 

  27. V. Chandramouli, S. Anthonysamy, P.R.V. Rao, J. Nucl. Mater. 265, 255 (1999)

    Article  CAS  Google Scholar 

  28. L. Ai, J. Jiang, Curr. Appl. Phys. 10, 284 (2010)

    Article  Google Scholar 

  29. L. Chauhan, R. Bokolia, K. Sreenivas, AIP Conf. Proc. 1731, 140043 (2016)

    Article  Google Scholar 

  30. C.J. Chen, M. Greenblatt, Solid State Ion. 18–19, 838 (1986)

    Article  Google Scholar 

  31. T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B.A. Najar, M. Pacia, Nanoscale Res. Lett. 12, 141 (2017)

    Article  Google Scholar 

  32. K. Nejati, R. Zabihi, Chem. Cent. J. 6, 23 (2012)

    Article  CAS  Google Scholar 

  33. U.N. Trivedi, M.C. Chhantbar, K.B. Modi, H.H. Joshi, Indian J. Pure Appl. Phys. 43, 688 (2005)

    CAS  Google Scholar 

  34. S.A. Mazen, N.I. Abu-Elsaad, ISRN Condensed Matter. Phys. 2012, 1 (2012)

    Article  Google Scholar 

  35. M.S. Selim, G. Turky, M.A. Shouman, G.A. El-Shobaky, Solid State Ion. 120, 173 (1999)

    Article  Google Scholar 

  36. G. Aravind, D. Ravinder, V. Nathanial, Phys. Res. Int. 2014, 1 (2014)

    Article  Google Scholar 

  37. K. Iwauchi, Jpn. J. Appl. Phys. 10, 1520 (1971)

    Article  CAS  Google Scholar 

  38. M.P. Reddy, G. Balakrishnaiah, W. Madhuri, M.V. Ramana, N.R. Reddy, K.V. Siva Kumar, V.R.K. Murthy, R.R. Reddy, J. Phys. Chem. Solids 71, 1373 (2010)

    Article  Google Scholar 

  39. M.K. Fayek, M.K. Elnimr, F. Sayedahmed, S.S. Ata-Allah, M. Kaiser, Solid State Commun. 115, 109 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

IP acknowledges SASTRA University for providing research facilities and TRR research grant offered by SASTRA University to do research. Authors also acknowledge Prof. N. Satyanarayana, Department of Physics, Pondicherry University for providing Impedance measurement facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Prakash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balamurugan, S., Manimekalai, S. & Prakash, I. Synthesis, characterization and electrical properties of Li2NiFe2O4/NiFe2O4 nanocomposites. J Mater Sci: Mater Electron 28, 18610–18619 (2017). https://doi.org/10.1007/s10854-017-7810-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7810-9

Navigation