Skip to main content
Log in

Synthesis and characterization of carbon-coated cobalt ferrite nanoparticles

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Cobalt ferrite nanoparticles (CFNPs) were prepared via a reverse micelle method. The CFNPs were subsequently coated with carbon shells by means of thermal chemical vapor deposition (TCVD). In this process, acetylene gas (C2H2) was used as a carbon source and the coating was carried out for 1, 2, or 3 h at 750°C. The Ar/C2H2 ratio was 10:1. Heating during the TCVD process resulted in a NP core size that approached 30 nm; the thickness of the shell was less than 10 nm. The composition, structure, and morphology of the fabricated composites were characterized using X-ray diffraction, simultaneous thermal analysis, transmission electron microscopy, high-resolution transmission electron microscopy, and selected-area diffraction. A vibrating sample magnetometer was used to survey the samples’ magnetic properties. The deposited carbon shell substantially affected the growth and magnetic properties of the CFNPs. Micro-Raman spectroscopy was used to study the carbon coating and revealed that the deposited carbon comprised graphite, multiwalled carbon nanotubes, and diamond- like carbon. With an increase in coating time, the intensity ratio between the amorphous and ordered peaks in the Raman spectra decreased, which indicated an increase in crystallite size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Matsumoto, A. Oshima, S. Sakurai, T. Yamada, M. Yumura, K. Hata, and D.N. Futaba, The application of gas dwell time control for rapid single wall carbon nanotube forest synthesis to acetylene feedstock, Nanomaterials, 5(2015), No. 3, p. 1200.

    Article  Google Scholar 

  2. R.R. Bacsa, I. Cameán, A. Ramos, A.B. Garcia, V. Tishkova, W.S. Bacsa, J.R. Gallagher, J.T. Miller, H. Navas, V. Jourdain, M. Girleanu, O. Ersen, and P. Serp, Few layer graphene synthesis on transition metal ferrite catalysts, Carbon, 89(2015), p. 350.

    Article  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438(2005), p. 197.

    Article  Google Scholar 

  4. C. Santhosh, M. Saranya, R. Ramachandran, N. Pradeep, V. Uma, P. Kollu, and A.N. Grace, Synthesis of magnetic nanoparticles and their effect on growth of carbon nanotubes, J. Indian Chem. Soc., 92(2015), p. 800.

    Google Scholar 

  5. T. Zhang, Y.M. Zhou, X.H. Bu, Y.J. Wang, and F.X. Qiu, Controlled fabrication of hierarchical MgAl2O4 spinel/carbon fiber composites by crystal growth and calcination processes, Ceram. Int., 41(2015), No. 9, p. 12504.

    Article  Google Scholar 

  6. P.X. Li, R.Q. Ma, Y. Zhou, Y.F. Chen, Q. Liu, G.H. Peng, Z.H. Liang, and J.C. Wang, Spinel nickel ferrite nanoparticles strongly cross-linked with multiwalled carbon nanotubes as a bi-efficient electrocatalyst for oxygen reduction and oxygen evolution, RSC Adv., 5(2015), p. 73834.

    Article  Google Scholar 

  7. T. Ohashi and T. Shima, Synthesis of vertically aligned single-walled carbon nanotubes with metallic chirality through facet control of catalysts, Carbon, 87(2015), p. 453.

    Article  Google Scholar 

  8. M. Zhang, X. Yang, X.F. Kan, X. Wang, L. Ma, and M.Q. Jia, Carbon-encapsulated CoFe2O4/graphene nanocomposite as high performance anode for lithium ion batteries, Electrochim. Acta, 112(2013), p. 727.

    Article  Google Scholar 

  9. J. Kim, H.S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I.C. Song, W.K. Moon, and T. Hyeon, Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery, Angew. Chem. Int. Ed., 47(2008), No. 44, p. 8438.

    Article  Google Scholar 

  10. X.Z. Xue, J.C. Wang, and E.P. Furlani, Self-assembly of crystalline structures of magnetic core–shell nanoparticles for fabrication of nanostructured materials, ACS Appl. Mater. Interfaces, 7(2015), No. 40, p. 22515.

    Article  Google Scholar 

  11. V.K. Verma, S.R. Kamaraju, R. Kancherla, L.K. Kona, S.S. Beevi, T. Debnath, S.P. Usha, R. Vadapalli, A.S. Arbab, and L.K. Chelluri, Fluorescent magnetic iron oxide nanoparticles for cardiac precursor cell selection from stromal vascular fraction and optimization for magnetic resonance imaging, Int. J. Nanomed., 10(2015), p. 711.

    Google Scholar 

  12. N. Sanpo, C. Wen, C.C. Berndt, and J. Wang, Multifunctional spinel ferrite nanoparticles for biomedical application, Adv. Funct. Mater., (2015), p. 183.

    Chapter  Google Scholar 

  13. B. Dai, L. Fu, Z. Zou, M. Wang, H. Xu, S. Wang, and Z. Liu, Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene, Nat. Commun., 2(2011), p. 522.

    Article  Google Scholar 

  14. Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei, and H.M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nat. Mater., 10(2011), p. 424.

    Article  Google Scholar 

  15. S. Park and R.S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol., 4(2009), p. 217.

    Article  Google Scholar 

  16. M. Kurian, S. Thankachan, D.S. Nair, E.K. Aswathy, A. Babu, A. Thomas, and K.T. Binu Krishna, Structural, magnetic, and acidic properties of cobalt ferrite nanoparticles synthesised by wet chemical methods, J. Adv. Ceram., 4(2015), No. 3, p. 199.

    Article  Google Scholar 

  17. S. Briceño, W. Brämer-Escamilla, P. Silva, G.E. Delgado, E. Plaza, J. Palacios, and E. Cañizales, Effects of synthesis variables on the magnetic properties of CoFe2O4 nanoparticles, J. Magn. Magn. Mater., 324(2012), No. 18, p. 2926.

    Article  Google Scholar 

  18. Y.J. Yao, Z.H. Yang, D.W. Zhang, W.C. Peng, H.Q. Sun, and S.B. Wang, Magnetic CoFe2O4–graphene hybrids: facile synthesis, characterization, and catalytic properties, Ind. Eng. Chem. Res., 51(2012), No. 17, p. 6044.

    Article  Google Scholar 

  19. P.F. Wang, J.C. Xu, Y.B. Han, B. Hong, H.X. Jin, D.F. Jin, X.L. Peng, J. Li, H.L. Ge, and X.Q. Wang, Magnetic CoFe2O4/carbon nanotubes composites: fabrication, microstructure and magnetic response, Mod. Phys. Lett. B, 28(2014), doi: 10.1142/s021798491450095X.

  20. A.C. Ferrari, and D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol., 8(2013) p. 235.

    Article  Google Scholar 

  21. E.P. Tomasini, E.B. Halac, M. Reinoso, E.J. Di Liscia, and M.S. Maier, Micro-Raman spectroscopy of carbon-based black pigments, J. Raman Spectrosc., 43(2012), No. 11, p. 1671.

    Article  Google Scholar 

  22. C.C. Wang, D.H. Chen, and T.C. Huang, Synthesis of palladium nanoparticles in water-in-oil microemulsions, Colloids Surf. A, 189(2001), No. 1-3, p. 145.

    Article  Google Scholar 

  23. A. Grill, Diamond-like carbon coatings as biocompatible materials: an overview, Diamond Relat. Mater., 12(2003), No. 2, p. 166.

    Article  Google Scholar 

  24. M.S.R. Rao, D.C. Kundaliya, S. Dhar, C.A. Cardoso, A. Curtin, S.J. Welz, R. Erni, N.D. Browning, S.E. Lofland, C.J. Metting, S.B. Ogale, and T. Venkatesan, Search for magnetism in Co and Fe-doped HfO2 thin films for potential spintronic applications, [in] MRS Proceedings, 2004.

    Google Scholar 

  25. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, and C. Muthamizhchelvan, Synthesis and characterization of NiFe2O4 nanosheet via polymer assisted co-precipitation method, Mater. Lett., 65(2011), No. 3, p. 483.

    Article  Google Scholar 

  26. A.K. Ganguli, A. Ganguly, and S. Vaidya, Microemulsionbased synthesis of nanocrystalline materials, Chem. Soc. Rev., 39(2010), No. 2, p. 474.

    Article  Google Scholar 

  27. D.S. Mathew and R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, Chem. Eng. J., 129(2007), No. 1-3, p. 51.

    Article  Google Scholar 

  28. X.M. Wang, M.Q. Zhu, L.K. Koopal, W. Li, W.Q. Xu, F. Liu, J. Zhang, Q.S. Liu, X.H. Feng, and D.L. Sparks, Effects of crystallite size on the structure and magnetism of ferrihydrite, Environ. Sci. Nano, 3(2016), p. 190.

    Article  Google Scholar 

  29. S.C. Lu, M.G. Yao, X.G. Yang, Q.J. Li, J.P. Xiao, Z. Yao, L.H. Jiang, R. Liu, B. Liu, S.L. Chen, B. Zou, T. Cui, and B.B. Liu, High pressure transformation of graphene nanoplates: A Raman study, Chem. Phys. Lett., 585(2013), p. 101.

    Article  Google Scholar 

  30. A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143(2007), No. 1, p. 47.

    Article  Google Scholar 

  31. L. Bokobza, J.-L. Bruneel, and M. Couzi, Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites, Vib. Spectrosc., 74(2014), p. 57.

    Article  Google Scholar 

  32. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M.S. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes, Adv. Phys., 60(2011), No. 3, p. 413.

    Article  Google Scholar 

  33. J.E. Samaniego, J.F. Perez, O. Solorza, and A. Garcia, Al2O3+FeCo and Al2O3+FeNi coatings for multiwalled carbon nanotubes growth, Diamond Relat. Mater., 53(2015), p. 18.

    Article  Google Scholar 

  34. M. Tyagi, M. Kumari, R. Chatterjee, and P. Sharma, Raman scattering spectra, magnetic and ferroelectric properties of BiFeO3–CoFe2O4 nanocomposite thin films structure, Phys. B, 448(2014), p. 128.

    Article  Google Scholar 

  35. Y.P. Park, T.G. Kim, and M.W. Cheon, Microstructure analysis of DLC thin film fabricated by filtered arc ion plating method, J. Ceram. Process. Res., 13(2012), p. S363.

    Google Scholar 

  36. T.D. Golden, Investigation of the Structure and Properties of Diamond-Like Carbon Films Deposited Electrochemically at low Temperatures [Dissertation], University of North Texas, Denton, 2004.

    Google Scholar 

  37. F. Tuinstra and J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys., 53(1970), No. 3, p. 1126.

    Article  Google Scholar 

  38. E. Cappelli, S. Orlando, G. Mattei, S. Zoffoli, and P. Ascarelli, SEM and Raman investigation of RF plasma assisted pulsed laser deposited carbon films, Appl. Surf. Sci., 197-198(2002), p. 452.

    Article  Google Scholar 

  39. M.A. Capano, N.T. McDevitt, R.K. Singh, and F. Qian, Characterization of amorphous carbon thin films, J. Vac. Sci. Technol. A, 14(1996), No. 2, p. 431.

    Article  Google Scholar 

  40. R.F. Bunshah,, Handbook of Deposition Technologies for Films and Coatings: Science, Technology and Applications, 2nd Ed., Noyes, Park Ridge, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Bakhshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshi, H., Shokuhfar, A. & Vahdati, N. Synthesis and characterization of carbon-coated cobalt ferrite nanoparticles. Int J Miner Metall Mater 23, 1104–1111 (2016). https://doi.org/10.1007/s12613-016-1328-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1328-7

Keywords

Navigation