Skip to main content
Log in

Structure and dielectric properties of ZnMn2O4/NiFe2O4 nanocomposite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

(1-x)ZnMn2O4/xNiFe2O4 (x = 0, 0.05, 0.1, 0.15, 0.2) nanocomposite system was prepared using the sol–gel technique. Rietveld analysis revealed the presence of two phases ZnMn2O4 and NiFe2O4 for all composites, but with phase percentages different from nominated values of (x). The effect of alloying parameter (x) on the lattice parameters and crystallite size of the obtained phases was also examined. The oxidation states of different ions were determined using X-ray photoelectron spectroscopy (XPS) technique. For the prepared nanocomposite samples, the dependence of dielectric constant, impedance and electric modulus on the frequency and temperature was performed using complex impedance technique. It was found that the obtained samples have ferroelectric characteristics. The degree of correlation for the different nanocomposite samples was explored using ac conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. V. Sannasi, K. Subbian, Ceram. Int. 47, 12300 (2021)

    Article  Google Scholar 

  2. Z.K. Heiba, M.B. Mohamed, M.M. Ghannam, S.I. Ahmed, Appl. Phys. A 127(6), 1 (2021)

    Article  Google Scholar 

  3. Z.K. Heiba, M.B. Mohamed, A.M. El-naggar, M.A. Ahmed, J. Market. Res. 11, 1480 (2021)

    Google Scholar 

  4. M.B. Mohamed, A.M. Wahba, Z.K. Heiba, J. Supercond. Novel Magn. 28(12), 3675 (2015)

    Article  Google Scholar 

  5. Z.K. Heiba, M.A. Deyab, A.M. El-naggar, M.B. Mohamed, Ceram. Int. 47(6), 7475 (2021)

    Article  Google Scholar 

  6. Y. Wang, Y. Fu, X. Wu, W. Zhang, Q. Wang, J. Li, Ceram. Int. 43, 11367 (2017)

    Article  Google Scholar 

  7. G. Liu, X. Gao, K. Wang, D. He, J. Li, Int. J. Hydrogen Energy 41(40), 17976 (2016)

    Article  Google Scholar 

  8. M. Kundu, G. Karunakaran, S. Kumari, N.V. Minh, E. Kolesnikov, M.V. Gorshenkov, D. Kuznetsov, J. Alloy. Compd. 725, 665 (2017)

    Article  Google Scholar 

  9. M. Adnan, M. Usman, M.A. Akram, S. Javed, S. Ali, I. Ahmad, M. Islam, J. Alloys Comp. 865, 158953 (2021)

    Article  Google Scholar 

  10. A.S. Varpe, M.D. Deshpande, J. Sol-Gel Sci Technol. 96, 718 (2020)

    Article  Google Scholar 

  11. L. Lutterotti, Nucl. Inst. Methods Phys. Res. B. 268, 334 (2010)

    Article  ADS  Google Scholar 

  12. J. Rodríguez-Carvajal, Phys. B (Amsterdam, Neth.) 192, 55 (1993)

    Article  ADS  Google Scholar 

  13. X. Juan, H. Hua, L. Hanxing, Y. Zhonghua, S. Zhe, Z. Lin, X. Qi, D. Jinqiang, C. Minghe, Ceram. Int. 42, 12796 (2016)

    Article  Google Scholar 

  14. A.K. Sinha, B. Bhushan, Jagannath, R. K.Sharma, S. Sen, B. P. Mandal, S. S. Meena, P. Bhatt, C. L. Prajapat, A. Priyam, S. K. Mishra, S. C. Gadkari, Results in Physics 13: 102299 (2019)

  15. X-F. Lu, D-J. Wu, R-Z. Li, Qi Li, S-H. Ye, Y-X. Tong, G-R. Li, J. Mater. Chem. A, 2: 4706 (2014)

  16. MC Biesinger, BP Payne, AP Grosvenor, LWM Lau, AR Gerson, R St C Smart Applied Surface Science 257: 2717 (2011)

  17. S.A. Mazen, A.S. Nawara, N.I. Abu-Elsaad, Ceram. Int. 47, 9856 (2021)

    Article  Google Scholar 

  18. Z.K. Heiba, M.B. Mohamed, S.I. Ahmed, Appl. Phys. A 127(3), 1 (2021)

    Google Scholar 

  19. ZK Heiba, MA Deyab, AM El-naggar, MB Mohamed, 47(6): 7475 (2021)

  20. K.W. Wagner, Ann. Phys. 40, 817 (1973)

    Google Scholar 

  21. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

  22. M.F. Kotkata, F.A. Abdel-Wahab, H.M. Maksoud, J. Phys. D: Appl. Phys. 39, 2059 (2006)

    Article  ADS  Google Scholar 

  23. K.P. Padmasree, D.K. Kanchan, A.R. Kulkarni, Solid State Ion. 177, 475 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Taif University Researchers Supporting Project number (TURSP-2020/249), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bakr Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiba, Z.K., Mohamed, M.B., El-naggar, A.M. et al. Structure and dielectric properties of ZnMn2O4/NiFe2O4 nanocomposite. Appl. Phys. A 127, 577 (2021). https://doi.org/10.1007/s00339-021-04731-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04731-2

Keywords

Navigation