Skip to main content

Advertisement

Log in

Temperature dependent morphological evaluation of spray pyrolysed TiO2 thin films prepared via aqueous route: electrochemical characterizations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Low temperature spray pyrolysis technique was used for the synthesis of mesoporous TiO2 thin films for electrochemical supercapacitor. 0.06 M aqueous solution of potassium titanium oxalate (PTO) was used to synthesize the quality thin films on stainless steel by varying decomposition temperatures from 573 to 723 K by the interval of 50 K. Uniform porous growth of TiO2 nanoparticles was confirmed by TEM and SEM. XRD study illustrates rutile tetragonal crystalline structure of the deposit at low decomposition temperature and EDX pattern confirms formation of a pristine TiO2. The wetting of surface and surface area analysis (BET) shows that the angle of contact varying from 59° to 33° and increase in surface 10.72–15.88 m2 g−1 by varying decomposition temperature respectively. The observed average pore diameter and average pore volume for optimized sample by BJH method is 3.775 nm and 0.066 cm3 g−1 respectively. Cyclic voltammetery shows maximum SC 737.1 F g−1 at 2 mV s−1 scan rate in 1 M NaOH. The highest values of specific energy (SE) 10.50 Wh Kg−1, specific power (SP) 46.66 KW Kg−1 and columbic efficiency (η) 98.00% were observed using galvanostatic charge–discharge method. Observed internal resistance was 0.9786 Ω evaluated using electrochemical impedance spectroscopy (EIS) and the achieved maximum value of specific capacitance is stable up to 2000 cycles, which is more feasible for supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Wang, L. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)

    Article  Google Scholar 

  2. C. Largoet, C. Portet, J. Chmiola, P. Taberna, Y. Gogotsi, P. Simon, J. Am. Chem. Soc. 130(9), 2730–2731 (2008)

    Article  Google Scholar 

  3. R. Kotz, M. Carlen, J. Electrochem. Acta 45, 2483–2498 (2000)

    Article  Google Scholar 

  4. A. Burke, J. Power Sources 91, 37–50 (2000)

    Article  Google Scholar 

  5. B.E. Conway, Electrochemical Supercapacitors. (Kluwer Academic/Plenum Press, New York, 1999)

    Book  Google Scholar 

  6. C. Dwivedi, V. Dutta, Appl. Surf. Sci. 258, 9584–9588 (2012)

    Article  Google Scholar 

  7. M. Sasani Ghamsari, S. Radiman, M. Azmi Abdul Hamid, S. Mahshid, S. Rahmani, J. Mater. Lett. 92, 287–290 (2013)

    Article  Google Scholar 

  8. R.C. Weast, Hand book of chemistry and Physics, 67th edn. (CRC press, Boca Rotan, 1986–1987), pp. B–140

  9. Y. Leprince-Wang, K. Yu-Zhang, Surf. Coat. Technol. 140, 155–160 (2001)

    Article  Google Scholar 

  10. H.Z. Abdulla, C.C. Sorrell, J. Mater. Sci. Forum 561–565, 2159–2162 (2007)

    Article  Google Scholar 

  11. A. Balamurugan, S. Kannan, S. Rajeswari, J. Mater. Lett. 59, 3138–3143 (2005)

    Article  Google Scholar 

  12. M.F. Hossain, S. Biswas, T. Takahashi, Y. Kubota, A. Fujishima, J. Thin Solid Films 516, 7149–7154 (2008)

    Article  Google Scholar 

  13. I. Seigo, P. Comte, P. Chen, M.K. Nazeeruddin, P. Liska, P. Pechy, M. Gratzel, Prog. Photovol. Res. Appl. 15, 603–612 (2007)

    Article  Google Scholar 

  14. N. Negishi, K. Takeuchi, T. Ibusuki, J. Sol Gel Technol. 13, 691 (1998)

    Article  Google Scholar 

  15. T. Sakaki, K.M. Beck, N. Kosizuka, J. Appl. Surf. Sci. 197–198, 619–623 (2002)

    Article  Google Scholar 

  16. N. Golego, S.A. Studenikin, M. Cocivera, J. Mater. Res. 14, 698–707 (1999)

    Article  Google Scholar 

  17. W.W. Xu, R. Kershaw, K.D. Wight, A. Wold, Mater. Res. Bull. 25, 1352–1385 (1990)

    Article  Google Scholar 

  18. S. Zhang, Y.F. Zhu, D.E. Brodie, J. Thin Solid Films 213, 265–270 (1992)

    Article  Google Scholar 

  19. A. Nakaruk, D. Ragazzon, C.C. Sorrell, J. Thin Solid Films 518, 3735–3742 (2010)

    Article  Google Scholar 

  20. D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855–874 (2011)

    Article  Google Scholar 

  21. D.J. Kim, S.H. Hahn, S.H. Oh, E.J. Kim, J. Mater. Lett. 57, 355–360 (2002)

    Article  Google Scholar 

  22. H.H. Huang, C.C. Huang, P.C. Huang, C.F. Yang, C.Y. Hsu, J. Nano Sci. Nanotechnol. 8, 2659–2664 (2008)

    Article  Google Scholar 

  23. C.C. Ting, S.Y. Chen, D.M. Liu, J. Appl. Phys. 88, 4628–4633 (2000)

    Article  Google Scholar 

  24. D.J. Won, C.H. Wang, H.K. Jang, D.J. Choi, J. Appl. Phys. A 73, 595–600 (2001)

    Article  Google Scholar 

  25. L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova, S. Tanemura, J. Appl. Surf. Sci. 212–213, 255–263 (2003)

    Article  Google Scholar 

  26. H. Zhang, J.F. Banfield, J. Phys. Chem. B 104, 3187–3481 (2000)

    Google Scholar 

  27. N.C. Raut, P. Chandramohan, M.P. Srinivasan, S. Dash, A.K. Tyagi, T. Mathews, J. Mater. Res. Bull. 46, 2057–2063 (2011)

    Article  Google Scholar 

  28. M.M. Ba-Abbad, A.A.H. Kadhu, A.B. Mahamad, M.S. Takriff, K. Sopian, Int J. Electrochem. Sci. 7, 4871–4888 (2012)

    Google Scholar 

  29. P.M. Olvier, G.W. Watson, E.T. Kelsey, S.C. Parker, J. Mater. Chem. 7, 563–568 (1997)

    Article  Google Scholar 

  30. J.W. Lang, L.B. Kong, W.J. Wu, Y.C. Lau, L. Kong, J. Chem. Commun. 35, 4213 (2008)

  31. B.Y. Fugare, B.J. Lokhande, J. Appl. Phys. A 123, 1–10 (2017)

    Article  Google Scholar 

  32. B.J. Lokhande, R.C. Ambare, R.S. Mane, S.R. Bharadwaj, Mater. Res. Bull. 48, 2978 (2013)

    Article  Google Scholar 

  33. P.-C. Chen, S.-J. Hsieh, Z. Jum, C.C. Chon, Mater. Lett. 133, 177 (2014)

    Google Scholar 

  34. R. Ananthakumar, K.S. Jae, J. Alloys Compd. 561, 262 (2013)

    Article  Google Scholar 

  35. B.Y. Fugare, B.J. Lokhande, J. Mater. Sci. 27, 5785–5795 (2016)

    Google Scholar 

  36. B.Y. Fugare, B.J. Lokhande, J. AIP Conf. Proc. 1724, 020010 (2016)

    Article  Google Scholar 

  37. Y.G. Wang, X.G. Zhang, J. Electrochem. Acta 49, 1960 (2004)

    Google Scholar 

  38. B.Y. Fugare, R.S. Ingole, B.J. Lokhande, J. Mater. Sci.: Mater. Electron. 28(12), 9017–9023 (2017)

Download references

Acknowledgements

Authors are grateful to DST-SERB for providing financial support through the project scheme 2014/DST-SERB/4688.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Lokhande.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fugare, B.Y., Lokhande, B.J. Temperature dependent morphological evaluation of spray pyrolysed TiO2 thin films prepared via aqueous route: electrochemical characterizations. J Mater Sci: Mater Electron 28, 16847–16854 (2017). https://doi.org/10.1007/s10854-017-7601-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7601-3

Navigation