Skip to main content
Log in

Structural and optical properties of oxygen doped single crystal ZnTe grown by multi-tube physical vapour transport

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bulk single crystals of zinc telluride up to 10 mm thick have been grown by the Multi-Tube Physical Vapour Transport technique and doped, in-situ during growth, with oxygen. Following hetero-epitaxial nucleation and buffer growth on 100 mm diameter GaAs seed wafers, oxygen was introduced to the quartz growth envelope, using nitrous oxide as a precursor, via a novel gas injection system. Mass spectra from a residual gas analyser sampling the gases exiting the growth envelope indicated that the nitrous oxide had been cracked at the operating temperature of the furnace releasing oxygen into the growth region. The structural perfection of the grown crystals was assessed by synchrotron based X-ray diffraction measurements and found to be extremely high, improving significantly with distance from the seed. Rocking curve widths, measured over a 4 mm × 7 mm area, as low as 20 arcsec were observed. No evidence was found for a reduction in crystalline quality resulting from the incorporation of oxygen. Luminescence studies (4–300 K) showed strong red luminescence at 680 nm persisting up to room temperature indicating that oxygen had been incorporated substitutionally onto tellurium sites. This material is highly transparent at the red emission wavelength with absorption coefficients of approximately 2 cm−1. Under alpha radiation from a 241Am source, scintillation was observed from the doped material with approximately 12,700 photons/MeV and a full width at half height maximum of 27%. The material is a potential candidate for large volume scintillation based radiation detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. W. Wang, A.S. Lin, J.D. Phillips, Appl. Phys. Lett. 95, 011103 (2009)

    Article  Google Scholar 

  2. J.L. Merz, Phys. Rev. 176, 961 (1968)

    Article  Google Scholar 

  3. J.J. Hopfield, D.G. Thomas, R.T. Lynch, Phys. Rev. Lett. 17, 312 (1966)

    Article  Google Scholar 

  4. Z.T. Kang, C.J. Summers, H. Menkara, B.K. Wagner, R. Durst, Y. Diawara, G. Mednikova, T. Thorson, Appl. Phys. Lett. 88, 111904 (2006)

    Article  Google Scholar 

  5. V.V. Nagarkar, V. Gaysinskiy, O.E. Ovechkina, S. Miller, B. Singh, L. Guo, T. Irving, IEEE Trans. Nucl. Sci 57, 923 (2010)

    Article  Google Scholar 

  6. W.W. Moses, G.A. Bizarri, R.T. Williams, S.A. Payne, A.N. Vasil’ev, J. Singh, Q. Li, J.Q. Grim, W.S. Choong, IEEE Trans. Nucl. Sci. 59, 2038 (2012)

    Article  Google Scholar 

  7. Z.T. Kang, H. Menkara, B.K. Wagner, C.J. Summers, R. Durst, Y. Diawara, G. Mednikova, T. Thorson, J. Electron. Mater. 35, 1262 (2006)

    Article  Google Scholar 

  8. J.T. Mullins, J. Carles, N.M. Aitken, A.W. Brinkman, J. Cryst. Growth 208, 211 (2000)

    Article  Google Scholar 

  9. J.T. Mullins, B.J. Cantwell, A. Basu, Q. Jiang, A. Choubey, A.W. Brinkman, J. Cryst. Growth 310, 2058 (2008)

    Article  Google Scholar 

  10. J.T. Mullins, B.J. Cantwell, A. Basu, Q. Jiang, A. Choubey, A.W. Brinkman, B.K. Tanner, J. Electron. Mater. 37 1460 (2008).

    Article  Google Scholar 

  11. A. Choubey, V. Perumal, A.T.G. Pym, J.T. Mullins, P.J. Sellin, A.W. Brinkman, I. Radley, A. Basu, B.K. Tanner, J. Cryst. Growth 352, 120 (2012)

    Article  Google Scholar 

  12. J.T. Mullins, F. Dierre, B.K. Tanner, J. Cryst. Growth 413, 61 (2015)

    Article  Google Scholar 

  13. H.S. Johnston, J. Chem. Phys. 19, 663 (1951)

    Article  Google Scholar 

  14. P.B. Hirsch, Mosaic structures, Ch. 6. In Prog. in Metal Physics, ed. by B. Chalmers, R. King (Pergamon Press, New York, 1956)

    Google Scholar 

  15. A.N. Pikhtin, A.D. Yas’kov, Sov. Phys. Semicond. 22, 613 (1988)

    Google Scholar 

  16. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  Google Scholar 

  17. K.P. O’Donnell, P.G. Middleton in Wide Bandgap II-VI Semiconductors, EMIS Datareview Series No. 17 ed. by R. Bhargava (INSPEC, London, 1997)

  18. R.E. Nahory, H.Y. Fan, Phys. Rev. 156, 825 (1967)

    Article  Google Scholar 

  19. D. Bimberg, M. Sondergeld, E. Grobe, Phys. Rev. B4, 3451 (1971)

    Article  Google Scholar 

  20. D.P. Halliday, M.D.G. Potter, J.T. Mullins, A.W. Brinkman, J. Cryst. Growth 220, 30 (2000)

    Article  Google Scholar 

  21. W.M. Wang, A.S. Lin, J.D. Phillips, W.K. Metzger, Appl. Phys. Lett. 95, 261107 (2009)

    Article  Google Scholar 

  22. C. Tablero, A. Marti, A. Luque, Appl. Phys. Lett. 96, 121104 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded contract HSHQDC-13-C-B0022. This support does not constitute an express or implied endorsement on the part of the Government. Sincere thanks are expressed to Ian Pape, Igor Dolbnya, Kawal Sawhney and Andrew Malandain of beamline B16 at the Diamond Light Source for their excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Mullins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mullins, J.T., Dierre, F., Halliday, D.P. et al. Structural and optical properties of oxygen doped single crystal ZnTe grown by multi-tube physical vapour transport. J Mater Sci: Mater Electron 28, 11950–11960 (2017). https://doi.org/10.1007/s10854-017-7004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7004-5

Keywords

Navigation