Skip to main content
Log in

Investigation of X-ray diffraction limitations upon the analysis of tellurium-atom injection into GaAs epitaxial layers

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

GaAs lattice “superdilation” caused by an introduced tellurium impurity, which is well known in publications, is experimentally studied. This phenomenon consists in the fact that the GaAs-lattice dilation can be more than 10 times greater than expansion that would appear upon the replacement of arsenic atoms with tellurium atoms if calculations are performed using the current-carrier concentration and Vegard’s law. The given phenomenon has already been observed at n Te > 3 × 1018 cm–3. A series of GaAs epitaxial layers heavily doped with tellurium and grown via metal-organic chemical vapor deposition are investigated using high-resolution X-ray diffractometry (HRXRD), secondary-ion mass spectrometry (SIMS), and the Hall effect. It is demonstrated that, despite a high Te concentration (1020‒1021 cm–3) in the layer and variations in the growth conditions, the concentration estimates based on HRXRD data depend linearly on the results of elemental analysis performed by means of SIMS. The GaAs lattice expands even somewhat slighter as compared to the case where arsenic atoms are replaced with all Te atoms injected into the layer. At the same time, the Hall carrier concentration decreases sharply beginning at 2 × 1020 cm–3. In accordance with the obtained results, the examined phenomenon can be interpreted as the strong compensation of donor and acceptor carriers rather than as superdilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. F. Fewster, X-Ray Scattering from Semiconductors (Imperial College Press, London, 2000).

    Book  Google Scholar 

  2. D. K. Bowen and B. K. Tanner, High Resolution X-ray Diffractometry and Topography (Taylor & Francis, London, 1998).

    Google Scholar 

  3. J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge Univ. Press, Cambridge, 2003).

    Book  Google Scholar 

  4. C. Giannini, C. Gerardi, L. Tapfer, A. Fischer, and K. H. Ploog, J. Appl. Phys. 74, 77 (1993).

    Article  Google Scholar 

  5. Yu. N. Drozdov and P. A. Yunin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (6), 1243 (2015).

    Article  Google Scholar 

  6. Yu. N. Drozdov and P. A. Yunin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10 (1), 96 (2016).

    Article  Google Scholar 

  7. Yu. N. Drozdov, M. N. Drozdov, V. M. Daniltsev, O. I. Khrikin, and P. A. Yunin, Semiconductors 46 (11), 1392 (2012).

    Article  Google Scholar 

  8. G. M. Kuznetsov, O. V. Pelevin, A. D. Barsukov, V. V. Olenin, and I. A. Savel’eva, Kristallografiya 17, 539 (1972).

    Google Scholar 

  9. J. B. Mullin, B. W. Straughan, C. M. H. Driscoll, and A. F. W. Willoughby, J. Appl. Phys. 47, 2584 (1976).

    Article  Google Scholar 

  10. G. G. Burlaku, M. M. Markus, and V. G. Tirzin, Izv. Akad. Nauk SSSR, Ser. Neorg. Mater. 13, 820 (1977).

    Google Scholar 

  11. A. G. Milnes, in Advances in Electronics and Electron Physics, Ed. by P. W. Hawkes (Academic Press, New York, 1983), Vol. 61, p.63.

    Article  Google Scholar 

  12. E. G. Seebauer and M. C. Kratzer, Charged Semiconductor Defects: Structure, Thermodynamics and Diffusion (Springer, London, 2009).

    Google Scholar 

  13. D. T. J. Hurke, J. Appl. Phys. 85, 6957 (1999).

    Article  Google Scholar 

  14. D. T. J. Hurke, J. Appl. Phys. 107, 121301 (2010).

    Article  Google Scholar 

  15. B. Paquette, B. Ilahi, V. Aimez, and R. Arès, J. Cryst. Growth 383, 30 (2013).

    Article  Google Scholar 

  16. B. Galiana, I. Rey-Stolle, C. Algora, and I. Garcia, J. Appl. Phys. 104, 114906 (2008).

    Article  Google Scholar 

  17. M. Kamp, G. Mörsch, J. Gräber, and H. Lüth, J. Appl. Phys. 76, 1974 (1994).

    Article  Google Scholar 

  18. B. K. Vainshtein, V. M. Fridkin, and V. L. Indenbom, Modern Crystallography, Vol. 2: Crystals’ Structure (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  19. O. Madelung, Semiconductors: Data Handbook (Springer, New York, 2003).

    Google Scholar 

  20. M. Leszczynski, E. Litvin-Staszewska, and T. Suski, Acta Phys. Pol., A 88 (5), 837 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Drozdov.

Additional information

Original Russian Text © Yu.N. Drozdov, V.M. Danil’tsev, M.N. Drozdov, P.A. Yunin, E.V. Demidov, P.I. Folomin, A.B. Gritsenko, S.A. Korolev, E.A. Surovegina, 2017, published in Poverkhnost’, 2017, No. 3, pp. 89–94. Investigation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozdov, Y.N., Danil’tsev, V.M., Drozdov, M.N. et al. Investigation of X-ray diffraction limitations upon the analysis of tellurium-atom injection into GaAs epitaxial layers. J. Surf. Investig. 11, 361–365 (2017). https://doi.org/10.1134/S1027451017020069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451017020069

Keywords

Navigation