Skip to main content
Log in

Oxygen-doped ZnTe phosphors for synchrotron X-ray imaging detectors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

ZnTe:O powder phosphors were successfully prepared by a dry synthesis process using gaseous doping and etching media. It was found that dry doping by O2 through ball-milling was an effective way to synthesize ZnTe:O powder phosphors and produced a red emission centered at 680 nm with a decay time of 1.1 µs. The emission intensity of dry O2-doped samples was three times more intense than from ZnO-doped samples, possibly due to a more uniform distribution of oxygen substitution on tellurium sites. The samples annealed in a 95% N2/5% H2 forming gas atmosphere exhibited a x-ray luminescent efficiency five times higher than did powders annealed in vacuum or N2 atmosphere. This enhancement was attributed to the removal of surface tellurium oxides. ZnTe:O phosphor screens were prepared with x-ray luminescence efficiencies equivalent to 56% of ZnSe:Cu,Ce,Cl and 76% of Gd2O2S:Tb screens under 17-keV radiation. An x-ray imaging resolution of 2.5 lines/mm was resolved, the same as that measured for commercial ZnSe:Cu,Ce,Cl and Gd2O2S:Tb screens. These results indicate that ZnTe:O is a promising phosphor candidate for synchrotron x-ray imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Shionoya and W.M. Yen, Phosphor Handbook (Boca Raton, Florida: CRC Press, 1999).

    Google Scholar 

  2. S.E. Ealick, Nat. Struct. Biol. 5, 620 (1998).

    Article  CAS  Google Scholar 

  3. I. Naday, E.M. Westbrook, M.L. Westbrook, D.J. Travis, M. Stanton, W.C. Phillips, and J. Xie, Nucl. Instrum. Methods A348, 635 (1994).

    Google Scholar 

  4. I. Naday, S. Ross, E.M. Westbrook, and G. Zentai, Opt. Eng. 37, 1235 (1998).

    Article  CAS  Google Scholar 

  5. N. Ban, P. Nissen, J. Hansen, P.B. Moore, and T.A. Steitz, Science 289, 905 (2000).

    Article  CAS  Google Scholar 

  6. R. Durst, Y. Diawara, G. Mednikova, T. Thorson, V. Valdna, and C. Summers, Advances in X-ray Scintillator Technology, 13th ESRF Users Meeting, Grenoble, France (2003).

  7. Y. Diawara, R.D. Durst, G. Mednikova, T. Thorson, J. Hiie, and V. Valdna, Proc. SPIE 5198, 119 (2004).

    Article  CAS  Google Scholar 

  8. V. Ryzhikov, G. Tamulaitis, N. Starzhinskiy, L. Gal’chinetskii, A. Novickovas, and K. Kazlauskas, J. Lumin. 101, 45 (2003).

    Article  CAS  Google Scholar 

  9. W.A. Hendrickson, Science 254, 51 (1991).

    Article  CAS  Google Scholar 

  10. M. Inoue, J. Appl. Phys. 55, 1558 (1984).

    Article  CAS  Google Scholar 

  11. R.E. Dietz, D.G. Thomas, and J.J. Hopfield, Phys. Rev. Lett. 8, 391 (1962).

    Article  CAS  Google Scholar 

  12. J.J. Hopfield, D.G. Thomas, and R.T. Lynch, Phys. Rev. Lett. 17, 312 (1966).

    Article  CAS  Google Scholar 

  13. J.L. Merz, Phys. Rev. 176, 961 (1968).

    Article  CAS  Google Scholar 

  14. Y. Burki, W. Czaja, V. Capozzi, and P. Schwendimann, J. Phys.: Condens. Mater. 5, 9235 (1993).

    Article  CAS  Google Scholar 

  15. C.B. Norris, J. Electron. Mater. 8, 733 (1979).

    CAS  Google Scholar 

  16. S. Iida, J. Phys. Soc. Jpn. 32, 142 (1972).

    Article  CAS  Google Scholar 

  17. C.B. Norris and H.P. Hjalmarson, J. Electron. Mater. 15, 331 (1986).

    CAS  Google Scholar 

  18. D.I. Kennedy and M.J. Russ, J. Phys. Chem. Solids 32, 847 (1971).

    Article  CAS  Google Scholar 

  19. Y. Biao, M. Azoulay, M.A. George, A. Burger, W.E. Collins, E. Silberman, C.H. Su, M.E. Volz, F.R. Szofran, and D.C. Gillies, J. Cryst. Growth 138, 219 (1994).

    Article  CAS  Google Scholar 

  20. N.N. Loiko, V.M. Konnov, Y.G. Sadofyev, E.I. Makhov, A.S. Trushin, and A.A. Gippius, Phys. Status Solidi B229, 317 (2002).

    Article  Google Scholar 

  21. K. Hayashida, T. Tanaka, M. Nishio, Y. Chang, J. Wang, S. Wang, Q. Guo, and H. Ogawa, J. Cryst. Growth 237–239, 1580 (2002).

    Article  Google Scholar 

  22. V. Valdna, J. Hiie, U. Kallavus, A. Mere, and T. Piibe, J. Cryst. Growth 161, 177 (1996).

    Article  CAS  Google Scholar 

  23. Z.T. Kang, H. Menkara, B.K. Wagner, C.J. Summers, and V. Valdna, J. Mater. Res. 20, 2510 (2005).

    Article  CAS  Google Scholar 

  24. V.D. Ryzhikov, N.G. Starzhinskiy, L.P. Gal’chinetskii, V.I. Silin, G. Tamulaitis, and E.K. Lisetskaya, Int. J. Inorg. Mater. 3, 1227 (2001).

    Article  CAS  Google Scholar 

  25. M.A. Foad, M. Watt, A.P. Smart, C.M.S. Torres, C.D.W. Wilkinson, W. Kuhns, H.P. Wagner, S. Bauers, H. Leiderers, and W. Gebhardts, Semicond. Sci. Technol. 6, A115 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, Z.T., Menkara, H., Wagner, B.K. et al. Oxygen-doped ZnTe phosphors for synchrotron X-ray imaging detectors. J. Electron. Mater. 35, 1262–1266 (2006). https://doi.org/10.1007/s11664-006-0252-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0252-4

Key words

Navigation