Skip to main content
Log in

Effects of Substrate and Post-Growth Treatments on the Microstructure and Properties of ZnO Thin Films Prepared by Atomic Layer Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Aluminum-doped zinc oxide (ZnO:Al) thin films were synthesized by atomic layer deposition on silicon, quartz and sapphire substrates and characterized by x-ray diffraction (XRD), high-resolution scanning electron microscopy, optical spectroscopy, conductivity mapping, Hall effect measurements and positron annihilation spectroscopy. XRD showed that the as-grown films are of single-phase ZnO wurtzite structure and do not contain any secondary or impurity phases. The type of substrate was found to affect the orientation and degree of crystallinity of the films but had no effect on the defect structure or the transport properties of the films. High conductivity of 10−3 Ω cm, electron mobility of 20 cm2/Vs and carrier density of 1020 cm−3 were measured in most films. Thermal treatments in various atmospheres induced a large effect on the thickness, structure and electrical properties of the films. Annealing in a Zn and nitrogen environment at 400°C for 1 h led to a 16% increase in the thickness of the film; this indicates that Zn extracts oxygen atoms from the matrix and forms new layers of ZnO. On the other hand, annealing in a hydrogen atmosphere led to the emergence of an Al2O3 peak in the XRD pattern, which implies that hydrogen and Al atoms compete to occupy Zn sites in the ZnO lattice. Only ambient air annealing had an effect on film defect density and electrical properties, generating reductions in conductivity and electron mobility. Depth-resolved measurements of positron annihilation spectroscopy revealed short positron diffusion lengths and high concentrations of defects in all as-grown films. However, these defects did not diminish the electrical conductivity in the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Chen, Z.L. Pei, C. Sun, J. Gong, R.F. Huang, and L.S. Wen, Mater. Sci. Eng. B Solid 85, 212 (2001).

    Article  Google Scholar 

  2. P.R. Chalker, P.A. Marshall, S. Romani, J.W. Roberts, S.J.C. Irvine, D.A. Lamb, A.J. Clayton, and P.A. Williams, J. Vac. Sci. Technol. A 31, 01A120 (2013).

    Article  Google Scholar 

  3. J.K. Srivastava, L. Agrarwal, and A.B. Bhattacharyya, J. Electrochem. Soc. 136, 3414 (1989).

    Article  Google Scholar 

  4. K. Hazra and S. Basu, Solid State Electron. 49, 1158 (2005).

    Article  Google Scholar 

  5. K.L. Chopra, S. Major, and D.K. Pandya, Thin Solid Films 102, 1 (1983).

    Article  Google Scholar 

  6. H. Li, L.K. Schirra, J. Shim, H. Cheun, B. Kippelen, O.L.A. Monti, and J.L. Bredas, Chem. Mater. 24, 3044 (2012).

    Article  Google Scholar 

  7. F.A. Selim, M.C. Tarun, D.E. Wall, L.A. Boatner, and M.D. McCluskey, Appl. Phys. Lett. 99, 202109 (2011).

    Article  Google Scholar 

  8. Y. Liu, L. Zhao, and J. Lian, Vacuum 81, 1 (2006).

    Article  Google Scholar 

  9. L. Znaidi, T. Touman, D. Vrel, N. Souded, S.B. Yahia, O. Brinza, A. Fischer, and A. Boudrioua, Coatings 3, 126 (2013).

    Article  Google Scholar 

  10. H. Gómez, A. Maldonado, R. Castanedo-Pérez, G. Torres-Delgado, and M.D.L.L. Olvera, Mater. Charact. 58, 708 (2007).

    Article  Google Scholar 

  11. H. Mondragón-Suárez, A. Maldonado, M.D.L.L. Olvera, A. Reyes, R. Castanedo-Pérez, G. Torres-Delgado, and R. Asomoza, Appl. Surf. Sci. 193, 52 (2002).

    Article  Google Scholar 

  12. D. Kim, I. Yun, and H. Kim, Curr. Appl. Phys. 10, S459 (2010).

    Article  Google Scholar 

  13. A.C. Jones and M.L. Hitchman, Chemical Vapour Deposition: Precursors, Processes and Applications (Cambridge: Royal Society of Chemistry, 2009).

    Google Scholar 

  14. T. Nam, C.W. Lee, H.J. Kim, and H. Kim, Appl. Surf. Sci. 295, 260 (2014).

    Article  Google Scholar 

  15. Y. Geng, L. Guo, S.S. Xu, Q.Q. Sun, S.J. Ding, H.L. Lu, and D.W. Zhang, J. Phys. Chem. C 115, 12317 (2011).

    Article  Google Scholar 

  16. N.P. Dasgupta, N. Sebastian, L. Wonyoung, O. Trejo, J.R. Lee, and F.B. Prinz, Chem. Mater. 22, 4769 (2010).

    Article  Google Scholar 

  17. G. Luka, T.A. Krajewski, B.S. Witkowski, G. Wisz, I.S. Virt, E. Guziewicz, and M. Godlewski, J. Mater. Sci. Mater. Electron. 22, 1810 (2011).

    Article  Google Scholar 

  18. R. Krause-Rehberg and H. Leipner, Positron Annihilation in Semiconductors (NewYork: Springer, 1999).

    Book  Google Scholar 

  19. F.A. Selim, C.R. Varney, M.C. Tarun, M.C. Rowe, G.S. Collins, and M.D. McCluskey, Phys. Rev. B 88, 174102 (2013).

    Article  Google Scholar 

  20. F.A. Selim, D. Winarski, C.R. Varney, M.C. Tarun, J. Ji, and M.D. McCluskey, Results Phys. 5, 28 (2015).

    Article  Google Scholar 

  21. J. Čížek, J. Valenta, P. Hruška, O. Melikhova, I. Procházka, M. Novotný, and J. Bulíř, Appl. Phys. Lett. 106, 251902 (2015).

    Article  Google Scholar 

  22. L.J. Brillson, Z. Zhang, D.R. Doutt, D.C. Look, B.G. Svensson, AYu Kuznetsov, and F. Tuomisto, Phys. Status Solidi B 250, 2110 (2013).

    Google Scholar 

  23. F.A. Selim, M.H. Weber, D. Solodovnikov, and K.G. Lynn, Phys. Rev. Lett. 99, 085502 (2007).

    Article  Google Scholar 

  24. P. Hautojaervi, Positrons in Solids (Heidelberg: Springer, 1979).

    Book  Google Scholar 

  25. P. Schultz and K.G. Lynn, Rev. Mod. Phys. 60, 701 (1988).

    Article  Google Scholar 

  26. F.A. Selim, D.P. Wells, J.F. Harmon, and J. Williams, J. Appl. Phys. 97, 113539 (2005).

    Article  Google Scholar 

  27. R. Kuzel, J. Czek, and M. Novotny, Metall. Mater. Trans. A 44A, 45 (2013).

    Article  Google Scholar 

  28. D.J. Winarski, W. Anwand, A. Wagner, P. Saadatkia, F.A. Selim, M. Allen, B. Wenner, K. Leedy, J. Allen, S. Tetlak, and D.C. Look, AIP Adv. 6, 095004 (2016).

    Article  Google Scholar 

  29. O. Byeong-Yun, M.-C. Jeong, D.-S. Kim, W. Lee, and J.-M. Myoung, J. Cryst. Growth 281, 475 (2005).

    Article  Google Scholar 

  30. W.R. Saleh, N.M. Saeed, W.A. Twej, and M. Alwan, Adv. Mater. Phys. Chem. 2, 1 (2012).

    Article  Google Scholar 

  31. C.X. Xu, G.P. Zhu, X. Li, Y. Yang, S.T. Tan, X.W. Sun, C. Lincoln, and T.A. Smith, J. Appl. Phys. 103, 9 (2008).

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Air Force Office of Scientific Research (AFOSR-SFFP-2015). Work at Bowling Green State University was funded by a 2016 CURS award (Cordula Mora), BGSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Selim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haseman, M., Saadatkia, P., Winarski, D.J. et al. Effects of Substrate and Post-Growth Treatments on the Microstructure and Properties of ZnO Thin Films Prepared by Atomic Layer Deposition. J. Electron. Mater. 45, 6337–6345 (2016). https://doi.org/10.1007/s11664-016-5025-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5025-0

Keywords

Navigation