Skip to main content
Log in

Electrical conductivity and dielectric characteristics of in situ prepared PVA/HgS nanocomposite films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polyvinyl alcohol (PVA) and mercury sulfide (HgS) polymer nanocomposite were prepared using the solution casting and the in situ chemical reduction of mercury nitrate (Hg(NO3)2) and sodium sulfide (Na2S) in aqueous solutions of PVA as capping for different molar content of Hg(NO3)2 and Na2S. The nanocomposites films were characterized by Fourier transform infrared, X-ray diffraction (XRD), and scanning electron microscopy. The XRD results for the nanoparticles revealed the hexagonal structure of the HgS, (α-phase). The influence of embedded HgS nanoparticles on the conductivity and dielectric properties of PVA films are investigated, over the frequency range 1 kHz–1 MHz, and the temperature range 30–110 °C. The variation of ac-conductivity with a frequency of the films follows Jonscher’s universal power law and found to be increased with increasing temperature, frequency and nanoparticle content. The variation of frequency exponent (s) indicated that the conduction mechanism was correlated barrier hopping model. The dielectric constant (ɛ′), and dielectric loss (ɛ″) was found to decrease with increasing frequency, but increase with increasing temperature and HgS nanoparticles content. The dc-conductivity (σ dc ) increase with increase of HgS concentration, and follows Arrhenius behavior in the investigated temperature region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.W.M. Blom, H.F.M. Schoo, M. Matters, Appl. Phys. Lett. 73, 3914–3916 (1998)

    Article  Google Scholar 

  2. X. Xu, E.R. Carraway, Nanomater. Nanotechnol. 2 Art. 17:2012 (2012)

  3. G.G. Roberts, E.L. Lind, E.A. Davis, J. Phys. Chem. Solids 30, 833–844 (1969)

    Article  Google Scholar 

  4. H.C. Sinha, I.M. Talwar, A.P. Shrivastava, Thin Solid Films 82, 229–234 (1981)

    Article  Google Scholar 

  5. M. Ravi, Y. Pavani, K.K. Kumar, S. Bhavani, A.K. Sharma, V.V.R.N. Rao, Mater. Chem. Phys. 130, 442–448 (2011)

    Article  Google Scholar 

  6. A. Gautam, S. Ram, Mater. Chem. Phys. 119, 266–271 (2010)

    Article  Google Scholar 

  7. C.C. Yang, G.M. Wu, Mater. Chem. Phys. 114, 948–955 (2009)

    Article  Google Scholar 

  8. A.L. Saroj, R.K. Singh, J. Phys. Chem. Solids 73, 162–168 (2012)

    Article  Google Scholar 

  9. O.Gh. Abdullah, D.A. Tahir, K. Kadir, J. Mater. Sci. Mater. Electron. 26, 6939–6944 (2015). doi:10.1007/s10854-015-3312-9

    Article  Google Scholar 

  10. P.C. Mehendru, N.L. Pathak, K. Jain, P. Mehendru, Phys. Status Solidi (a) 42, 403–407 (1977)

    Article  Google Scholar 

  11. H.N. Chandrakala, B. Ramaraj, Shivakumaraiah, G.M. Madhu, Siddaramaiah, J. Alloys Compd. 551, 531–538 (2013)

    Article  Google Scholar 

  12. T. Kimura, M. Kajiwara, J. Mater. Sci. 33, 2955–2959 (1998)

    Article  Google Scholar 

  13. A. Nigrawal, N. Chand, Prog. Nanotechnol. Nanomater. 2, 25–33 (2013)

    Google Scholar 

  14. X. Yuan, Polym. Bull. 67, 1785–1797 (2011)

    Article  Google Scholar 

  15. A.S. Roy, S. Gupta, S. Sindhu, A. Parveen, P.C. Ramamurthy, Compos. B 47, 314–319 (2013)

    Article  Google Scholar 

  16. C.A. Finch, Polyvinyl alcohol properties and application (Wiley, New York, 1973)

    Google Scholar 

  17. S. Gunasekaran, E. Sailatha, S. Seshadri, S. Kumaresan, Indian J. Pure Appl. Phys. 47, 12–18 (2009)

    Google Scholar 

  18. S. Keskin, I. Uslu, T. Tunc, M. Ozturk, A. Aytimur, Mater. Manuf. Process. 26, 1346–1351 (2011)

    Article  Google Scholar 

  19. Z. Ali, H. Youssef, T. Afify, Polym. Compos. 29, 1119–1124 (2008)

    Article  Google Scholar 

  20. K.S. Hemalatha, K. Rukmani, N. Suriyamurthy, B.M. Nagabhushana, Mater. Res. Bull. 51, 438–446 (2014)

    Article  Google Scholar 

  21. J. Xu, X. Cui, J. Zhang, H. Liang, H. Wang, J. Li, Bull. Mater. Sci. 31, 189–192 (2008)

    Article  Google Scholar 

  22. R.P. Chahal, S. Mahendia, A.K. Tomar, S. Kumar, J. Alloys Compd. 538, 212–219 (2012)

    Article  Google Scholar 

  23. H. Karami, M. Ghasemi, S. Matini, Int. J. Electrochem. Sci. 8, 11661–11679 (2013)

    Google Scholar 

  24. S. Sarma, P. Datta, Nanosci. Nanotechnol. Lett. 2, 261–265 (2010)

    Article  Google Scholar 

  25. R. Selvaraj, K. Qi, S.M.Z. Al-Kindy, M. Sillanpaa, Y. Kim, C.W. Tai, Royal Soc. Chem. 4, 15371–15376 (2014)

    Google Scholar 

  26. S. Wu, C. Chen, X. Shen, G. Li, L. Gao, A. Chen, J. Hou, X. Liang, Cryst. Eng. Comm. 15, 4162–4166 (2013)

    Article  Google Scholar 

  27. I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P.K. Sharma, A. Sharma, Mater. Chem. Phys. 139, 802–810 (2013)

    Article  Google Scholar 

  28. C. Brosseau, A. Beroual, A. Boudida, J. Appl. Phys. 88, 7278 (2000)

    Article  Google Scholar 

  29. S.B. Aziz, Z.H.Z. Abidin, Mater. Chem. Phys. 144, 280–286 (2014)

    Article  Google Scholar 

  30. V. Raja, A.K. Sharma, V.V.R.N. Rao, Mater. Lett. 58, 3242–3247 (2004)

    Article  Google Scholar 

  31. T. Blythe, D. Bloor, Electrical properties of polymers (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  32. K.P. Singh, P.N. Gupta, Eur. Polym. J. 34, 1023–1029 (1998)

    Article  Google Scholar 

  33. M. Trihotri, U.K. Dwivedi, F.H. Khan, M.M. Malik, M.S. Qureshi, J. Non-Cryst. Solids 421, 1–13 (2015)

    Article  Google Scholar 

  34. P.K. Khare, S.K. Jain, Bull. Mater. Sci. 23, 17–21 (2000)

    Article  Google Scholar 

  35. J.C. Dyre, T.B. Schroder, Rev. Mod. Phys. 72, 873–892 (2000)

    Article  Google Scholar 

  36. M.H. Harun, E. Saion, A. Kassim, M.Y. Hussain, I.S. Mustafa, M.A.A. Omer, Malays. Polym. J. 3, 24–31 (2008)

    Google Scholar 

  37. K. Ulutas, D. Deger, S. Yakut, J. Phys Conf. Ser. 417, 012040 (2013)

    Article  Google Scholar 

  38. OGh Abdullah, B.K. Aziz, A.O. Saeed, Int. J. Sci. Adv. Technol. 2, 65–70 (2012)

    Google Scholar 

  39. K. Dutta, S.K. De, J. Nanopart. Res. 9, 631–638 (2007)

    Article  Google Scholar 

  40. J. Yang, X.J. Meng, M.R. Shen, L. Fang, J.L. Wang, T. Lin, J.L. Sun, J.H. Chu, J. Appl. Phys. 104, 104113 (2008)

    Article  Google Scholar 

  41. A. Ghosh, Phys. Rev. B 41, 1479 (1990)

    Article  Google Scholar 

  42. A.R. Long, Adv. Phys. 31, 553–637 (1982)

    Article  Google Scholar 

  43. M.S. Aziz, A.G. Mostafa, A.M. Youssef, S.M.S. Youssif, Phys. Res. Int. 2011, 1–10 (2011)

    Article  Google Scholar 

  44. D.K. Ray, A.K. Himanshu, T.P. Sinha, Indian J. Pure App. Phys. 43, 787–793 (2005)

    Google Scholar 

  45. S. Choudhary, R.J. Sengwa, Indian J. Eng. Mater. Sci. 19, 245–252 (2012)

    Google Scholar 

  46. OGh Abdullah, S.R. Saeed, Chem. Mater. Res. 3, 19–24 (2013)

    Google Scholar 

  47. N. Ahad, E. Saion, E. Gharibshahi, J. Nanomater. 2012, Article ID 857569 (2012)

  48. A.K. Jonscher, A.A. Ansari, Philos. Mag. 23, 205–223 (1971)

    Article  Google Scholar 

  49. A.K. Jonscher, Thin Solid Films 1, 213–234 (1967)

    Article  Google Scholar 

  50. F.H.A. El-Kader, W.H. Osman, R.S. Hafez, Phys. B 408, 140–150 (2013)

    Article  Google Scholar 

  51. M. Ravi, S. Bhavani, K.K. Kumar, V.V.R.N. Rao, Solid State Sci. 19, 85–93 (2013)

    Article  Google Scholar 

  52. T.V. Kumar, A.S. Chary, S. Bhardwaj, A.M. Awasthi, S.N. Reddy, Int. J. Mater. Sci. Appl. 2, 173–178 (2013)

    Google Scholar 

Download references

Acknowledgments

The Authors are very much grateful to the University of Sulaimani, for providing financial assistance for this research. The authors gratefully acknowledge the Kurdistan Institution for Strategic Studies and Scientific Research, and the Ministry of Science and Technology for the facility in their laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omed Gh. Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, O.G., Salman, Y.A.K. & Saleem, S.A. Electrical conductivity and dielectric characteristics of in situ prepared PVA/HgS nanocomposite films. J Mater Sci: Mater Electron 27, 3591–3598 (2016). https://doi.org/10.1007/s10854-015-4196-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4196-4

Keywords

Navigation