Skip to main content
Log in

Enhanced interfacial interaction for effective reinforcement of poly(vinyl alcohol) nanocomposites at low loading of graphene

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The graphene/poly(vinyl alcohol) (PVA) nancomposites with homogeneous dispersion of the nanosheet and enhanced nanofiller–matrix interfacial interaction were fabricated via water blending partially reduced graphene oxide and PVA. The nanocomposites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetry. The graphene nanosheets were fully exfoliated in the PVA matrix and a new covalent linkage was formed between graphene and PVA matrix. Uncommon to conventional method, the enhanced interfacial adhesion resulted from covalent interaction and hydrogen bondings between graphene and PVA backbone. The mechanical and thermal properties of the nanocomposites were significantly improved at low graphene loadings. An 116% increase in tensile strength and a 19 °C improvement of onset thermal degradation temperature were achieved by the addition of only 0.8 wt% graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  3. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  CAS  Google Scholar 

  4. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  CAS  Google Scholar 

  5. Rao CNR, Sood AK, Voggu R et al (2010) Some novel attributes of graphene. J Phys Chem Lett 1:572–580

    Article  CAS  Google Scholar 

  6. Kim J, Kim F, Huang J (2010) Seeing graphene-based sheets. Mater Today 13:28–38

    Article  CAS  Google Scholar 

  7. Lee CG, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  CAS  Google Scholar 

  8. Chae HK, Siberio-Perez DY, Kim J (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523–527

    Article  CAS  Google Scholar 

  9. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  CAS  Google Scholar 

  10. Balandin AA, Ghosh S, Bao WZ, Caliza I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  11. Wu JS, Pisula W, Mullen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747

    Article  CAS  Google Scholar 

  12. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  13. Arora A, Padua GW (2010) Nanocomposites in food packing. J Food Sci 75:R43–R49

    Article  CAS  Google Scholar 

  14. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  CAS  Google Scholar 

  15. Kuila T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    Article  Google Scholar 

  16. Park R, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  17. Loh KP, Bao Q, Ang PK et al (2010) The chemistry of graphene. J Mater Chem 20:2277–2289

    Article  CAS  Google Scholar 

  18. Kim H, Macosko CW (2009) Processing–property relationships of polycarbonate/graphene composites. Polymer 50:3797–3809

    Article  CAS  Google Scholar 

  19. Zhang HB, Zheng WG, Yan Q, Yang Y, Wang J, Lu Z, Ji GY, Yu Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51:1191–1196

    Article  CAS  Google Scholar 

  20. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Article  CAS  Google Scholar 

  21. Yang Z, Shi X, Yuan J, Pu H, Liu Y (2010) Preparation of poly(3-hexylthiophene)/graphene nanocomposite via in situ reduction of modified graphite oxide sheets. Appl Surf Sci 257:138–142

    Article  CAS  Google Scholar 

  22. Ansari S, Giannells EP (2009) Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites. J Polym Sci B 47:888–897

    Article  CAS  Google Scholar 

  23. Park S, Mohanty N, Suk JW, Nagaraja A, An J, Piner RD, Cai W, Dreyer DR, Berry V, Ruoff RS (2010) Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite. Adv Mater 22:1–5

    Article  Google Scholar 

  24. Liu J, Yang W, Tao L, Li D, Boyer C, Davis TP (2010) Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization. J Polym Sci A 48:425–433

    Article  CAS  Google Scholar 

  25. Cuong TV, Pham VH, Tran QT, Hahn SH, Chung JS, Shin EW, Kim EJ (2010) Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide. Mater Lett 64:399–401

    Article  CAS  Google Scholar 

  26. Xu Y, Long G, Huang L, Huang Y, Wan X, Ma Y, Chen Y (2010) Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon 48:3293–3311

    Article  Google Scholar 

  27. Bao Q, Zhang H, Yang JX, Wang S, Tang DY, Jose R, Ramakrishna S, Lim CT, Loh KP (2010) Graphene-polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater 20:782–791

    Article  CAS  Google Scholar 

  28. Liu J, Tao L, Yang W, Li D, Boyer C, Wuhrer R, Braet F, Davis TP (2010) Synthesis, characterization, and multilayer assembly of pH sensitive graphene–polymer nanocomposites. Langmuir 26:10068–10075

    Article  CAS  Google Scholar 

  29. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  30. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:1–6

    Article  Google Scholar 

  31. Cao Y, Feng J, Wu P (2010) Alkyl-functionalized graphene nanosheets with improved Lipophilicity. Carbon 48:1670–1692

    Article  Google Scholar 

  32. Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363

    Article  CAS  Google Scholar 

  33. Wang S, Tambraparni M, Qiu J, Tipton J, Dean D (2009) Thermal expansion of graphene composites. Macromolecules 42:5251–5255

    Article  CAS  Google Scholar 

  34. Gong L, Kinloch IA, Young RJ, Riaz I, Jalil R, Novoselov KS (2010) Interfacial stress transfer in a graphene monolayer nanocomposite. Adv Mater 22:2694–2697

    Article  CAS  Google Scholar 

  35. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  36. Park S, An J, Piner RD, Jung I, Yang D, Velamakanni A, Nguyen ST, Ruoff RS (2008) Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater 20:6592–6594

    Article  CAS  Google Scholar 

  37. Hummers WS, Offeman RE (1958) Preparation of graphite oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  38. Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X (2010) Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem Mater 22:2213–2218

    Article  CAS  Google Scholar 

  39. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  40. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  41. Steurer P, Wissert R, Thomann R, Mülhaupt R (2009) Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun 30:316–327

    Article  CAS  Google Scholar 

  42. Sridhar V, Oh I (2010) A coagulation technique for purification of graphene sheets with graphene-reinforced PVA hydrogel as byproduct. J Colloid Interface Sci 348:384–387

    Article  CAS  Google Scholar 

  43. Salavagione HJ, Gómez MA, Martínez G (2009) Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol). Macromolecules 42:6331–6334

    Article  CAS  Google Scholar 

  44. Jiang L, Shen XP, Wu JL, Shen KC (2010) Preparation and characterization of graphene/poly(vinyl alcohol) nanocomposites. J Appl Polym Sci 118:275–279

    CAS  Google Scholar 

  45. Xu Y, Hong W, Bai H, Li C, Shi G (2009) Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47:3538–3543

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the supports by Municipal Science Foundation Project of CQ CSTC (No. 2007BB4442)and of CQEC (No. KJ070402) and Open-end Fund of Hi-tech Lab for Mountain Road Construction and Maintenance, CQTJU (CQMRCM-10-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoya Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, X. Enhanced interfacial interaction for effective reinforcement of poly(vinyl alcohol) nanocomposites at low loading of graphene. Polym. Bull. 67, 1785–1797 (2011). https://doi.org/10.1007/s00289-011-0506-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0506-z

Keywords

Navigation