Skip to main content
Log in

Structural and Electrical Properties of CFO Nanoparticle- Filled PVA

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

(1 − x)PVA–(x)CFO nanocomposite thick films with x = 0 to 0.1 (i.e., 0% to 10%) have been prepared by employing the solvent casting method. The polyvinyl alcohol (PVA), cobalt ferrite (CFO), and PVA–CFO nanocomposites were characterized by x-ray diffraction pattern analysis, Raman spectroscopy, and Fourier-transform infrared (FTIR) spectroscopy. X-ray diffraction pattern analysis revealed the coexistence of both PVA and CFO in the nanocomposites, indicating that no major chemical reaction occurred between them. The morphology and elemental composition were analyzed by field-emission scanning electron microscopy (FE-SEM) and energy-dispersive spectroscopy (EDS), respectively. The real and imaginary parts of the dielectric constant were measured over a wide range of frequencies (100 Hz to 1 MHz) and temperatures (30°C to 130°C). The dielectric constant of PVA increased on loading CFO nanofiller into the polymer matrix. The resistivity was measured for all samples from room temperature to 130°C. The electric polarization was measured using a ferroelectric hysteresis (PE) loop tracer. The highest polarization was observed for the 2% CFO nanofiller loading in the PVA polymer matrix. The activation energy was calculated by analyzing the dielectric data, being lower than that obtained from the analysis of the temperature-dependent resistivity data. Also, the leakage current increased with increase of the CFO filler loading in the nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Seo, S. Nam, H. Kim, T.D. Anthopoulos, D.D. Bradley, and Y. Kim, NPG Asia Mater. 8, e235 (2016).

    Article  Google Scholar 

  2. A.G. El-Shamy, W.M. Attia, and K.M.A. El Kader, Mater. Chem. Phys. 191, 225 (2017).

    Article  Google Scholar 

  3. S. Bhavani, M. Ravi, Y. Pavani, V. Raja, R.S. Karthikeya, and V.V.R.N. Rao, J. Mater. Sci. Mater. Electron. 28, 13344 (2017).

    Article  Google Scholar 

  4. S. Sugumaran, C.S. Bellan, and M. Nadimuthu, Iran. Polym. J. 24, 63 (2015).

    Article  Google Scholar 

  5. A.B. Salunkhe, V.M. Khot, N.D. Thorat, M.R. Phadatare, C.I. Sathish, D.S. Dhawale, and S.H. Pawar, Appl. Surf. Sci. 264, 598 (2013).

    Article  Google Scholar 

  6. P.B. Bhargav, V.M. Mohan, A.K. Sharma, and V.V.R.N. Rao, Ionics 13, 173 (2007).

    Article  Google Scholar 

  7. M. Watanabe, H. Uchida, and M. Emori, J. Phys. Chem. B 102, 3129 (1998).

    Article  Google Scholar 

  8. S.C. Chakraborty, N.B. Patil, S.K. Das, and S. Basu, Indian J. Pure Appl. Phys. 29, 478 (1991).

    Google Scholar 

  9. H.Y. Sung, Y.Y. Wang, and C.C. Wan, J. Electrochem. Soc. 145, 1207 (1998).

    Article  Google Scholar 

  10. S. Kayal and R. Ramanujan, Mater. Sci. Eng. C 30, 484 (2010).

    Article  Google Scholar 

  11. E.A. Van Etten, E.S. Ximenes, L.T. Tarasconi, I.T.S. Garcia, M.M.C. Forte, and H. Boudinov, Thin Solid Films 568, 111 (2014).

    Article  Google Scholar 

  12. S. Supriya, S. Kumar, and M. Kar, J. Appl. Phys. 120, 215106 (2016).

    Article  Google Scholar 

  13. S. Supriya, S. Kumar, and M. Kar, J. Mater. Sci. Mater. Electron. 28, 10652 (2017).

    Article  Google Scholar 

  14. N. Chand, N. Rai, and S.L. Agrawal, Bull. Mater. Sci. 34, 1297 (2011).

    Article  Google Scholar 

  15. N. Bouropoulos, G.C. Psarras, N. Moustakas, A. Chrissanthopoulos, and S. Baskoutas, Phys. Stat. Sol. A 205, 2033 (2008).

    Article  Google Scholar 

  16. P.B. Bhargav, V.M. Mohan, A.K. Sharma, and V.V.R.N. Rao, Curr. Appl. Phys. 9, 165 (2009).

    Article  Google Scholar 

  17. M. Hema, S.S. Pandian, A. Sakunthala, D. Arunkumar, and H. Nithya, Physica B Condens. Matter 403, 2740 (2008).

    Article  Google Scholar 

  18. S. Rashidi and A. Ataie, Mater. Res. Bull. 80, 321 (2016).

    Article  Google Scholar 

  19. S. Rashidi and A. Ataie, J. Ultrafine Grained Nanostruct. Mater. 48, 59 (2015).

    Google Scholar 

  20. A. Salunkhe, V. Khot, N. Thorat, M. Phadatare, C. Sathish, D. Dhawale, and S. Pawar, Appl. Surf. Sci. 264, 598 (2013).

    Article  Google Scholar 

  21. S. Mirzaee, S.F. Shayesteh, and S. Mahdavifar, Polymer 55, 3713 (2014).

    Article  Google Scholar 

  22. L. García-Cerda, M. Escareno-Castro, and M. Salazar-Zertuche, J. Non-Cryst. Solids 353, 808 (2007).

    Article  Google Scholar 

  23. Y.A. Fedotova, V. Baev, A. Lesnikovich, I. Milevich, and S. Vorobeva, Phys. Solid State 53, 694 (2011).

    Article  Google Scholar 

  24. S. Supriya, S. Kumar, and M. Kar, J. Electron. Mater. 46, 6884 (2017).

    Article  Google Scholar 

  25. S. Kumar, S. Supriya, L.K. Pradhan, and M. Kar, J. Mater. Sci. Mater. Electron. 28, 16679 (2017).

    Article  Google Scholar 

  26. M.O. Reddy and B.C. Babu, Indian J. Mater. Sci. 2015, 927364 (2015).

    Google Scholar 

  27. J.R. Ferraro, K. Nakamoto, and C.W. Brown, Introductory Raman Spectroscopy (Atlanta: Elsevier, 2003).

    Google Scholar 

  28. R. Kumar and M. Kar, Ceram. Int. 42, 6640 (2016).

    Article  Google Scholar 

  29. Y.A. Badr, K.M. Abd El-Kader, and R.M. Khafagy, J. Appl. Polym. Sci 92, 1984 (2004).

    Article  Google Scholar 

  30. A.V. Raut, R.S. Barkule, D.R. Shengule, and K.M. Jadhav, J. Magn. Magn. Mater. 358–359, 87 (2014).

    Article  Google Scholar 

  31. L.A. Garcıa-Cerda, M.U. Escareno-Castro, and M. Salazar-Zertuche, J. Non-Cryst. Solids 353, 808 (2007).

    Article  Google Scholar 

  32. Y.D. Kolekar, L.J. Sanchez, and C.V. Ramana, J. Appl. Phys. 115, 144106 (2014).

    Article  Google Scholar 

  33. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, and Y.D. Kolekar, Smart Mater. Struct. 18, 085014 (2009).

    Article  Google Scholar 

  34. S.G. Kakade, Y.R. Ma, R.S. Devan, Y.D. Kolekar, and C.V. Ramana, J. Phys. Chem. C 120, 5682 (2016).

    Article  Google Scholar 

  35. A. Awadhia, S.K. Patel, and S.L. Agarwal, Prog. Cryst. Growth Charact. Mater. 52, 61 (2006).

    Article  Google Scholar 

  36. K.S. Hemalatha, G. Sriprakash, M.V.N.A. Prasad, R. Damle, and K. Rukmani, J. Appl. Phys. 118, 154103 (2015).

    Article  Google Scholar 

  37. K. Vasundhara, B.P. Mandal, and A.K. Tyagi, RSC Adv. 5, 8591 (2015).

    Article  Google Scholar 

  38. N. Dabra, J.S. Hundal, K.C. Sekhar, A. Nautiyal, and R. Nath, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56, 1627 (2009).

    Article  Google Scholar 

  39. G. Chakraborty, K. Gupta, D. Rana, and A.K. Meikap, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 025005 (2013).

    Article  Google Scholar 

  40. E. Palaimiene, J. Macutkevic, D.V. Karpinsky, A.L. Kholkin, and J. Banys, Appl. Phys. Lett. 106, 012906 (2015).

    Article  Google Scholar 

  41. M.H. Makled, E. Sheha, T.S. Shanap, and M.K. El-Mansy, J. Adv. Res. 4, 531 (2013).

    Article  Google Scholar 

  42. T.A. Abdel-Baset and A. Hassen, Phys. B 499, 24 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

Two authors gratefully acknowledge UGC, New Delhi for providing a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoranjan Kar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supriya, S., Kumar, S. & Kar, M. Structural and Electrical Properties of CFO Nanoparticle- Filled PVA. J. Electron. Mater. 48, 3612–3623 (2019). https://doi.org/10.1007/s11664-019-07113-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07113-w

Keywords

Navigation