Skip to main content
Log in

Electrical properties and temperature sensitivity of B-substituted CuO-based ceramics for negative temperature coefficient thermistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The ceramics of B-substituted Cu0.992Y0.008O (BYCO) with weight percentages of 0.25, 0.5, 0.75, 1.0 and 1.5 % of H3BO3 were prepared by a wet-chemical synthesis method, and the related phase component and electrical properties were investigated. All the ceramics have a monoclinic structure as that of CuO crystal. The BYCO ceramics have a typical characteristic of negative temperature coefficient (NTC) of resistivity over the temperature range from 25 to 300 °C, and the NTC materials constant (B 25/85) can be adjusted from 1112 to 4376 K by changing the H3BO3 content in BYCO ceramics. Investigations of complex impedance spectra revealed that the resistivities of the BYCO ceramics mainly result from the bulk effect, and both the bulk effect and grain boundary effect contribute to the NTC feature. Both the band conduction and electron-hopping models are proposed for the conduction mechanisms in the B-substituted CuO-based ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Feteira, J. Am. Ceram. Soc. 92, 967–983 (2009)

    Article  Google Scholar 

  2. M.N. Muralidharan, P.R. Rohini, E.K. Sunny, K.R. Dayas, A. Seema, Ceram. Int. 38, 6481–6486 (2012)

    Article  Google Scholar 

  3. F. Golestani-Fard, S. Azimi, K.J.D. Mackenzie, J. Mater. Sci. 22, 2847–2851 (1987)

    Article  Google Scholar 

  4. A. Feltz, W. Polzl, J. Eur. Ceram. Soc. 20, 2353–2366 (2000)

    Article  Google Scholar 

  5. X.Q. Li, J. Mater. Sci. 19, 271–274 (2008)

    Article  Google Scholar 

  6. D.L. Fang, C.S. Chen, A.J.A. Winnubst, J. Alloys Compd. 454, 286–291 (2008)

    Article  Google Scholar 

  7. K. Park, I.H. Han, Mater. Sci. Eng. B 119, 55–60 (2005)

    Article  Google Scholar 

  8. R. Ranjan, R. Kumar, B. Behera, R.N.P. Choudhary, Phys. B 404, 3709–3716 (2009)

    Article  Google Scholar 

  9. D. Xue, H. Zhang, Y. Li, Y. Liu, Z. Li, J. Mater. Sci. Mater. Electron. 2, 1306–1312 (2012)

    Article  Google Scholar 

  10. M.A.L. Nobre, S. Lanfredi, Appl. Phys. Lett. 82, 2284–2286 (2003)

    Article  Google Scholar 

  11. J. Wang, H. Zhang, D. Xue, Z. Li, J. Phys. D Appl. Phys. 42, 235103 (2009)

    Article  Google Scholar 

  12. A. Azam, A.S. Ahmed, M.S. Ansari, M. Shafeeq, A.H. Naqvi, J. Alloys Compd. 506, 237–242 (2010)

    Article  Google Scholar 

  13. S. Upadhyay, O. Parkash, D. Kumar, J. Phys. D Appl. Phys. 37, 1483–1491 (2004)

    Article  Google Scholar 

  14. P. Ouyang, H. Zhang, Y. Wang, W. Chen, Z. Li, Electrochim. Acta 130, 232–238 (2014)

    Article  Google Scholar 

  15. G. Korotcenkov, B.K. Cho, Sens. Actuators B 196, 80–98 (2014)

    Article  Google Scholar 

  16. B.N. Pal, D. Chakravorty, J. Phys. D Appl. Phys. 38, 3537–3542 (2005)

    Article  Google Scholar 

  17. Y. Zhang, Y. Wu, H. Zhang, W. Chen, G. Wang, Z. Li, J. Mater. Sci. Mater. Electron. 25, 5552–5559 (2014)

    Article  Google Scholar 

  18. P. Ouyang, H. Zhang, Y. Zhang, J. Wang, Z. Li, J. Mater. Sci. Mater. Electron. 26, 6163–6169 (2015)

    Article  Google Scholar 

  19. J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Phys. Rev. B 38, 11322–11330 (1988)

    Article  Google Scholar 

  20. M. Huang, F. Li, Y. Zhang, B. Li, X. Gao, Ceram. Int. 40, 5533–5538 (2014)

    Article  Google Scholar 

  21. J. Huang, H. Wu, D. Cao, G. Wang, Electrochim. Acta 75, 208–212 (2012)

    Article  Google Scholar 

  22. D.P. Dubal, G.S. Gund, R. Holze, C.D. Lokhande, J. Power Sources 242, 687–698 (2013)

    Article  Google Scholar 

  23. J. Xiang, J. Tu, Y. Yuan, X. Wang, X. Huang, Z. Zeng, Electrochim. Acta 54, 1160–1165 (2009)

    Article  Google Scholar 

  24. W. Chen, H. Zhang, Z. Ma, B. Yang, Z. Li, J. Mater. Chem. A 3, 14202–14209 (2015)

    Article  Google Scholar 

  25. S. Sumikura, S. Mori, S. Shimizu, H. Usami, E. Suzuki, J. Photochem. Photobiol. A Chem. 194, 143–147 (2008)

    Article  Google Scholar 

  26. S. Anandan, X. Wen, S. Yang, Mater. Chem. Phys. 93, 35–40 (2005)

    Article  Google Scholar 

  27. H. He, P. Bourges, Y. Sidis, C. Ulrich, L.P. Regnault, S. Pailhès, N.S. Berzigiarova, N.N. Kolesnikov, B. Keimer, Science 295, 1045–1047 (2002)

    Article  Google Scholar 

  28. J. Rίmirez-Ortiz, T. Ogura, J. Medina-Valtierra, S.E. Acota-Ortiz, P. Bosch, J.A. Reyes, V.H. Lara, Appl. Surf. Sci. 174, 177–184 (2001)

    Article  Google Scholar 

  29. S. Jammi, S. Sakthivel, L. Rout, T. Mukherjee, S. Mandal, R. Mitra, P. Saha, T. Punniyamurthy, J. Org. Chem. 74, 1971–1976 (2009)

    Article  Google Scholar 

  30. Z. Li, H. Zhang, B. Bergerman, X. Zou, J. Eur. Ceram. Soc. 26, 2357–2364 (2006)

    Article  Google Scholar 

  31. P. Ouyang, H. Zhang, D. Xue, Z. Li, J. Mater. Sci. Mater. Electron. 24, 3932–3939 (2013)

    Article  Google Scholar 

  32. R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  33. R. Schmidt, A.W. Brinkman, Adv. Funct. Mater. 17, 3170–3174 (2007)

    Article  Google Scholar 

  34. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132–138 (1990)

    Article  Google Scholar 

  35. K. Park, Mater. Sci. Eng. B 107, 19–26 (2004)

    Article  Google Scholar 

  36. R. Martínez, A. Kumar, R. Palai, J.F. Scott, R.S. Katiyar, J. Phys. D Appl. Phys. 44, 105302 (2011)

    Article  Google Scholar 

  37. F. Borsa, D.R. Torgeson, S.W. Martin, H.K. Patel, Phys. Rev. B 46, 795–800 (1992)

    Article  Google Scholar 

  38. A.K. Jonscher, Nature 267, 673–679 (1977)

    Article  Google Scholar 

  39. S. Lanfredi, M.A.L. Nobre, Appl. Phys. Lett. 86, 081916 (2005)

    Article  Google Scholar 

  40. S. Lanfredi, G. Palacio, F.S. Bellucci, C.V. Colin, M.A.L. Nobre, J. Phys. D Appl. Phys. 45, 435302 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the National Nature Science Foundation of China (No. 51172287).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Zhang, H., Zhang, J. et al. Electrical properties and temperature sensitivity of B-substituted CuO-based ceramics for negative temperature coefficient thermistors. J Mater Sci: Mater Electron 26, 10151–10158 (2015). https://doi.org/10.1007/s10854-015-3701-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3701-0

Keywords

Navigation