Skip to main content
Log in

NTC characteristic of SnSb0.05O2–BaTi0.8Fe0.2O3−δ composite materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SnSb x O2 (x = 0.003, 0.01, 0.02, 0.05 and 0.07) ceramics and SnSb0.05O2–BaTi0.8Fe0.2O3-δ composite ceramics were prepared by using wet-chemical synthesis methods. The phases and related electrical properties of the ceramics were investigated. The results show that all the prepared ceramics have the effect of negative temperature coefficient (NTC) of resistivity over a wide temperature range. The room-temperature resistivities (ρ 25) and material constants (B 25/85) of the SnSb x O2 NTC ceramics increase with the Sb concentration increases. The B 25/85 of the ceramics can be enhanced obviously when a certain content of BaTi0.8Fe0.2O3-δ was added in SnSb x O2. The analysis of impedance spectra reveals that both grain and grain boundary contribute to the NTC effect of the ceramics. The conduction mechanisms combining the electron-hopping model and band conduction are proposed for the NTC effect in the SnSb0.05O2–BaTi0.8Fe0.2O3-δ composite ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.G. Larson, R.J. Arnott, D.G. Wickham, J. Phys. Chem. Solids 23, 1771–1781 (1962)

    Article  CAS  Google Scholar 

  2. F. Fard, Golestani, S. Azimi, K.J.D. Mackenzie, J. Mater. Sci. 22, 2847–2851 (1987)

    Article  Google Scholar 

  3. R. Jadhav, D. Kulkarni, V. Puri, J. Mater. Sci.: Mater. Electron. 21, 503–508 (2010)

    Article  CAS  Google Scholar 

  4. C.H. Zhao, B.Y. Wang, P.H. Yang, L. Winnubst, C.S. Chen, J. Euro. Ceram. Soc. 28, 35–40 (2008)

    Article  CAS  Google Scholar 

  5. X.Q. Li, J. Mater. Sci. 19, 271–274 (2008)

    CAS  Google Scholar 

  6. K. Park, J. Euro, Ceram. Soc. 26, 909–914 (2006)

    Article  CAS  Google Scholar 

  7. K. Park, J. Am. Ceram. Soc. 88, 862–866 (2005)

    Article  CAS  Google Scholar 

  8. K. Zakrzewska, Thin Solid Films 391, 229–238 (2001)

    Article  CAS  Google Scholar 

  9. J. Wang, H. Zhang, Y. Li, Z. Li, J. Mater. Sci.: Mater. Electron. 21, 811–816 (2010)

    Article  CAS  Google Scholar 

  10. J. Wang, H. Zhang, D. Xue, Z. Li, J. Phys. D. 42, 235103 (2009)

    Article  Google Scholar 

  11. D.S. Ginley, C. Bright, Mater. Res. Soc. Bull. 25, 15–18 (2000)

    Article  CAS  Google Scholar 

  12. Q.Q. Ren, Y.N. Zhou, Q. Sun, Z.W. Fu, J. Power, Sources. 199, 336–340 (2012)

    Article  CAS  Google Scholar 

  13. S. Shanthi, C. Subramanian, P. Ramasamy, Mater. Sci. Eng. B 57, 127–134 (1999)

    Article  Google Scholar 

  14. E. Shanthi, V. Dutta, A. Banerjee, K.L. Chopra, J. Appl. Phys. 5, 6243–6251 (1980)

    Article  Google Scholar 

  15. H.S.H. Saadedin, B. Pecquenard, J. Marcus, A. Mansouri, C. Labrugere, M.A. Subramamina, G. Campet, Solid State Sci. 8, 7–13 (2006)

    Article  Google Scholar 

  16. D. Xue, H. Zhang, Y. Li, Y. Liu, Z. Li, J. Mater. Sci.: Mater. Electron. 23, 1306–1312 (2012)

    Article  CAS  Google Scholar 

  17. Z. Li, H. Zhang, B. Bergerman, X. Zou, J. Euro, Ceram. Soc. 26, 2357–2364 (2006)

    Article  CAS  Google Scholar 

  18. R.K. Dwivedi, D. Kumar, O. Parkash, J. Mater. Sci. 36, 3657–3665 (2001)

    Article  CAS  Google Scholar 

  19. S. Agarwal, G. Sharma, Sensors Actuators B. 85, 205–211 (2002)

    Article  CAS  Google Scholar 

  20. H. Bayhan, A. Kavasoglu, Turk. J. Phys. 27, 529–535 (2003)

    CAS  Google Scholar 

  21. L.A.M. Nobre, S. Lanfredi, J. Appl. Phys. 93, 5576–5582 (2003)

    Article  CAS  Google Scholar 

  22. M.A.L. Nobre, S. Lanfredi, Appl. Phys. Lett. 81, 451–453 (2002)

    Article  CAS  Google Scholar 

  23. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsca Dielectric Press, London, 1983)

    Google Scholar 

  24. S. Brahma, R.N.P. Choudhary, A.K. Thakur, Phys. B 355, 188–201 (2005)

    Article  CAS  Google Scholar 

  25. S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Phys. Stat. Sol. 201, 588–595 (2004)

    Article  CAS  Google Scholar 

  26. R. Ranjian, R. Kumar, B. Behera, R.N.P. Choudhary, Phys. B 404, 3709–3716 (2009)

    Article  Google Scholar 

  27. S.K. Rout, S. Parida, E. Sinha, P.K. Barhai, I.W. Kim, Current Appl. Phys. 10, 917–922 (2010)

    Article  Google Scholar 

  28. S. Lanfredi, M.A.L. Nobre, Appl. Phys. Lett. 86, 081916 (2005)

    Article  Google Scholar 

  29. K. Prabhakar, S.K. Narayandass, D. Mangalaraj, Mater. Sci. Eng. B 98, 225–231 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the supports of the National Nature Science Foundation of China (No. 51172287) and the Laboratory Research Fund funded by the State Key Laboratory of Powder Metallurgy, P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouyang, P., Zhang, H., Xue, D. et al. NTC characteristic of SnSb0.05O2–BaTi0.8Fe0.2O3−δ composite materials. J Mater Sci: Mater Electron 24, 3932–3939 (2013). https://doi.org/10.1007/s10854-013-1342-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1342-8

Keywords

Navigation