Skip to main content
Log in

Electrical properties of NiO-based composite ceramics modified by La2MO4 (M = Cu or Ni) for NTC thermistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Negative temperature coefficient (NTC) thermistors are important for temperature sensors and actuators. In this work, La2MO4 (M = Cu or Ni) modified NiO composite ceramics are prepared by conventional solid-state reaction method for NTC thermistors. All prepared composite ceramics have a main phase with a rock-salt structure of NiO and a second phase of La2NiO4 or La2CuO4. The introduction of La2CuO4 or La2NiO4 significantly improved the sintering ability of ceramics and reduced the sintering temperature from 1380 °C of pure NiO ceramic to 1250 °C composite ceramics. For the existence of highly conductive La2CuO4 or La2NiO4, the room temperature resistivity of ceramics can be effectively reduced, while the ceramics maintain NTC material constant higher than 4000 K. The electrical properties of ceramics were analyzed by combining with XRD, XPS, and complex impedance spectra. Several conduction modes such as band conduction, polaron hopping, percolation conduction, and grain-boundary transition of charge carriers are proposed for the electrical conductivity and NTC characteristics of NiO-based composite ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. N. Acharya, R. Sagar, Structure and electrical properties characterization of NiMn2O4 NTC ceramics. Inorg. Chem. Comm. 132, 108856 (2021). https://doi.org/10.1016/j.inoche.2021.108856

    Article  CAS  Google Scholar 

  2. F. Zhang, Z. Huang, Effects of partial substitution of cations on electrical properties of Mn–Co–Ni–O thin films. Appl. Phys. Lett. 111, 222103 (2017). https://doi.org/10.1063/1.5004035

    Article  CAS  Google Scholar 

  3. Y. Liu, H. Zhang, W. Fu, Z. Yang, Z. Li, Characterization of temperature sensitivity of V-modified CuFe2O4 ceramics for NTC thermistors. J. Mater. Sci. Mater. Electron. 29, 18797–18806 (2018). https://doi.org/10.1007/s10854-018-0005-1

    Article  CAS  Google Scholar 

  4. J. Wang, H. Zhang, D. Xue, Z. Li, Electrical properties of hexagonal BaTi0.8Co0.2O3–δ ceramic with NTC effect. J. Phys. D 42, 235103 (2009). https://doi.org/10.1088/0022-3727/42/23/235103

    Article  CAS  Google Scholar 

  5. Y. Zeng, Z. Li, J. Shao, X. Wang, W. Hao, H. Zhang, Electrical properties of perovskiteYFeO3 based ceramics modified by Cu/Nb ions as negative temperature coefficient thermistors. J. Mater. Sci. Mater. Electron. 30, 14528–14537 (2019). https://doi.org/10.1007/s10854-019-01824-w

    Article  CAS  Google Scholar 

  6. C. Zhou, Z. Wang, S. Wang, P. Yang, C. Chen, Preparation and characterization of negative temperature coefficient (ni,mn)3O4–La(Mn,Ni)O3 composite. J. Electroceram. 20, 113–117 (2008). https://doi.org/10.1007/s10832-007-9375-0

    Article  CAS  Google Scholar 

  7. M. Chao, W. Ren, L. Wang, J.B. Xu, A.M. Chang, L. Bian, Structural, optical, and electrical properties of (Mn1.56Co0.96Ni0.48O4)1–x(LaMnO3)x composite thin films. J. Eur. Ceram. Soc. 36, 4059–4064 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.06.019

    Article  CAS  Google Scholar 

  8. B. Li, Z. Li, S. Zhang, D. Peng, C. Gao, H. Zhang, Electrical properties of Ga/V-modified ZnO ceramic thermistors. J. Mater. Sci. Mater. Electron. 32, 28792–28806 (2021). https://doi.org/10.1007/s10854-021-07264-9

    Article  CAS  Google Scholar 

  9. O. Pan, H. Zhang, Y. Zhang, J. Wang, Z. Li, Zr-substituted SnO2-based NTC thermistors with wide application temperature range and high property stability. J. Mater. Sci. Mater. Electron. 26, 6163–6169 (2015). https://doi.org/10.1007/s10854-015-3197-7

    Article  CAS  Google Scholar 

  10. S. Zhang, H. Zhang, S. Leng, Y. Wen, H. Wang, Z. Li, Electrical properties and aging characteristic of Sb/Ga co-doped single-cation oxide SnO2. J. Mater. Sci. Mater. Electron. 33, 23821–23833 (2022). https://doi.org/10.1007/s10854-022-09140-6

    Article  CAS  Google Scholar 

  11. X. Wang, Z. Li, W. Yan, P. Wang, H. Zhang, Electrical properties of Nb/Al-doped CuO-based ceramics for NTC thermistors. Process. Appl. Ceram. 14, 47–55 (2020). https://doi.org/10.2298/PAC2001047W

    Article  CAS  Google Scholar 

  12. C. Gao, Z. Li, L. Yang, D. Peng, H. Zhang, Investigation of electrical and aging properties of bi-modified (Zn0.4Ni0.6)1–xNaxO ceramic thermistors. J. Eur. Ceram. Soc. 41, 4160–4166 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.02.030

    Article  CAS  Google Scholar 

  13. D. Peng, Z. Li, L. Huang, C. You, H. Wang, H. Zhang, Characterization of NiO based ceramics modified with Y2O3/BiSbO3 for application of NTC thermistors. J. Mater. Sci. Mater. Electron. 33, 11092–11105 (2022). https://doi.org/10.1007/s10854-022-08086-z

    Article  CAS  Google Scholar 

  14. J. Wang, H. Zhang, X. Sun, Y. Liu, Z. Li, Electrical properties and temperature sensitivity of Li/Fe-modified NiO-based ceramics as NTC thermistors. J. Mater. Sci. Mater. Electron. 27, 11902–11908 (2016). https://doi.org/10.1007/s10854-016-5335-2

    Article  CAS  Google Scholar 

  15. Z. He, Z. Li, Q. Xiang, W. Yan, H. Zhang, Electrical properties of Y/Mg modified NiO simple oxides for negative temperature coefficient thermistors. Int. J. Appl. Ceram. Tech. 16, 160–169 (2019). https://doi.org/10.1111/ijac.13084

    Article  CAS  Google Scholar 

  16. Y. Ichiyanagi, N. Wakabayashi, J. Yamazaki, S. Yamada, Y. Kimishima, E. Komatsu, H. Tajima, Magnetic properties of NiO nanoparticles. Phys. Rev. 329, 862–863 (2003). https://doi.org/10.1016/S0921-4526(02)02578-4

    Article  CAS  Google Scholar 

  17. W. Shin, N. Murayama, High performance p-type thermoelectric oxide based on NiO. Mater. Lett. 45, 302–306 (2000). https://doi.org/10.1016/S0167-577X(00)00122-1

    Article  CAS  Google Scholar 

  18. H. Gallon, X. Tu, M.V. Twigg, J.C. Whitehead, Plasma-assisted methane reduction of a NiO catalyst—low temperature activation of methane and formation of carbon nanofibres. Appl. Catal. B 106, 616–620 (2011). https://doi.org/10.1016/j.apcatb.2011.06.023

    Article  CAS  Google Scholar 

  19. Z. Ma, H. Zhang, Y. Zhang, J. Zhang, Z. Li, Electrochemical characteristics of nanostructured NiO plates hydrothermally treated on nickel foam for Li-ion storage. Electrochim. Acta 176, 1427–1433 (2015). https://doi.org/10.1016/j.electacta.2015.07.161

    Article  CAS  Google Scholar 

  20. J.Q. Li, L. Chen, Z.X. Zhao, Y. Matsui, Short-range-oxygen order and superconducting phase separation in La2CuO4+x. Phys. C. 341–348, 1747–1750 (2000). https://doi.org/10.1016/S0921-4534(00)00978-3

    Article  Google Scholar 

  21. S. Sugai, M. Sato, T. Itoc, T. Ido, H. Takagi et al., Two-spin superexchange and four-spin cyclic exchange interactions in high Tc superconducting cuprates and isostructural La2NiO4. J. Magn. Magn. Mater. 90–91, 631–632 (1990). https://doi.org/10.1016/S0304-8853(10)80228-8

    Article  Google Scholar 

  22. M. Reehuis, C. Ulrich, K. Prokes, A. Gozar, G. Blumberg, Keimer, Crystal structure and high-field magnetism of La2CuO4. Phys. Rev. B 73, 14 (2006). https://doi.org/10.1103/PhysRevB.73.144513

    Article  CAS  Google Scholar 

  23. H. Spijker, D. Simon, F. Ooms, Photocatalytic water splitting by means of undoped and doped La2CuO4 photocathodes. Int. J. Hydrogen Energy 33, 6414–6419 (2008). https://doi.org/10.1016/j.ijhydene.2008.08.023

    Article  CAS  Google Scholar 

  24. G. Rao, Z. Qiao, J. Liang, Thermodynamic analysis of CuO–La2OO3 binary phase diagram. Chin. Sci. Bull. 8, 577–580 (1989). (in Chinese)

    Google Scholar 

  25. M. Zinkevich, F. Aldinger, Thermodynamic analysis of the ternary La–Ni–O system. J. Alloys Compd. 375, 147–161 (2004). https://doi.org/10.1002/chin.200435011

    Article  CAS  Google Scholar 

  26. T. Lin, X. Meng, L. Shi, Catalytic hydrocarboxylation of acetylene to acrylic acid using Ni2O3 and cupric bromide as combined catalysts. J Mol. Catal. A 396, 77–83 (2015). https://doi.org/10.1016/j.molcata.2014.09.027

    Article  CAS  Google Scholar 

  27. J. Wu, Z.M. Huang, W. Zhou, C. Ouyang, Y. Hou, Y.Q. Gao, R. Chen, J.H. Chu, Investigation of cation distribution, electrical, magnetic properties and their correlation in Mn2–xCo2xNi1–xO4 films. J. Appl. Phy. 115, 113703 (2014). https://doi.org/10.1063/1.4868683

    Article  CAS  Google Scholar 

  28. D. Tripathi, T.K. Dey, Effect of particle size distribution on thermo-mechanical properties of NiO filled LDPE composites. Bull. Mater. Sci. 42, 174 (2019). https://doi.org/10.1007/s12034-019-1853-x

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the research funds from the Development Funds of Hunan Wedid Materials Technology Co., Ltd., China (Grant No. 738010241), the Foundation of the Department of Science and Technology of Guizhou province (Grant No. CG[2021]110), and the Foundation of the Department of Education of Guizhou province (Grant No. QJJ[2022]003).

Author information

Authors and Affiliations

Authors

Contributions

ZL, HZ and LH contributed to the study conception and design. Material preparation, data collection and analysis were performed by LH, SL and ML. The first draft of the manuscript was prepared by LH, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhicheng Li.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2881.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Zhang, H., Leng, S. et al. Electrical properties of NiO-based composite ceramics modified by La2MO4 (M = Cu or Ni) for NTC thermistors. J Mater Sci: Mater Electron 34, 1137 (2023). https://doi.org/10.1007/s10854-023-10500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10500-z

Navigation