Skip to main content
Log in

Electrical properties of hexagonal BaTi1−x Fe x O3−δ (x = 0.1, 0.2, 0.3) ceramics with NTC effect

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BaTi1−x Fe x O3−δ (x = 0.1, 0.2, 0.3) powders were prepared by a wet chemical process polymerized with polyvinyl alcohol, and the related ceramics were obtained by conventional sintering process. The phase component and electrical properties of the ceramics were investigated. The analysis of X-ray diffraction indicates that the BaTi1−x Fe x O3−δ ceramics have a hexagonal crystalline structure. The temperature dependence of resistivity of the ceramics show a characteristic of negative temperature coefficient (NTC) of resistivity with the material constants of around 5,000 K. The impedance analysis reveals that both the grain effect and grain-boundary effect contribute simultaneously to the NTC effect. The conduction mechanisms for the NTC characteristic are proposed to be the electron-hopping model between Fe3+/Fe2+ ions inside grains and the charge carrier transports overcoming the energy barrier of the grain boundary by thermal activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Park, J.K. Lee, Scripta Mater. 57, 329–332 (2007)

    Article  CAS  Google Scholar 

  2. D.A. Kukuruznyak, P. Ahmet, T. Chikyow, A. Yamamoto, F.S. Ohuchi, J. Appl. Phys. 98, 043710 (2005)

    Article  Google Scholar 

  3. R. Jadhav, D. Kulkarni, V. Puri, J. Mater. Sci. Mater. Electron. 21, 503–508 (2010)

    Article  CAS  Google Scholar 

  4. C.H. Zhao, B.Y. Wang, P.H. Yang, L. Winnubst, C.S. Chen, J. Eur. Ceram. Soc. 28, 35–40 (2008)

    Article  CAS  Google Scholar 

  5. K. Park, J.K. Lee, S.J. Kim, W.S. Seo, W.S. Cho, C.W. Lee, S. Nahm, J. Alloys Compd. 467, 310–316 (2009)

    Article  Google Scholar 

  6. C. Peng, H. Zhang, A. Chang, F. Guan, B. Zhang, P. Zhao, J. Mater. Sci. Mater. Electron. doi:10.1007/s10854-011-0505-8

  7. A. Basu, A.W. Brinkman, T. Hashemi, Int. J. Inorg. Mater. 3, 1219–1221 (2001)

    Article  CAS  Google Scholar 

  8. M.A.L. Nobre, S. Lanfredi, Appl. Phys. Lett. 82, 2284–2286 (2003)

    Article  CAS  Google Scholar 

  9. M.A.L. Nobre, S. Lanfredi, Appl. Phys. Lett. 81, 451–453 (2002)

    Article  CAS  Google Scholar 

  10. S. Lanfredi, M.A.L. Nobre, Appl. Phys. Lett. 86, 081916 (2005)

    Article  Google Scholar 

  11. K.W. Kirby, B.A. Wechsler, J. Am. Ceram. Soc. 74, 1841–1847 (1991)

    Article  CAS  Google Scholar 

  12. F.D. Morrison, D.C. Sinclair, J.M.S. Skakle, A.R. West, J. Am. Ceram. Soc. 81, 1957–1960 (1998)

    Article  CAS  Google Scholar 

  13. R.M. Glaister, H.F. Kay, Proc. Phys. Soc. 76, 763–771 (1960)

    Article  CAS  Google Scholar 

  14. M. Wakamatsu, N. Takeuchi, G.C. Lai, I. Shingo, Yogyo Kyokaishi 95, 1181–1185 (1987)

    Article  CAS  Google Scholar 

  15. H. Arend, L. Kihlborg, J. Am. Ceram. Soc. 52, 63–65 (1969)

    Article  CAS  Google Scholar 

  16. G.M. Keith, M.J. Rampling, K. Sarma, N.M. Alford, D.C. Sinclair, J. Eur. Ceram. Soc. 24, 1721–1724 (2004)

    Article  CAS  Google Scholar 

  17. H.T. Langhammer, T. Müller, R. Böttcher, V. Mueller, H.P. Abicht, J. Eur. Ceram. Soc. 24, 1489–1492 (2004)

    Article  CAS  Google Scholar 

  18. I.E. Grey, C. Li, L.M.D. Cranswick, R.S. Roth, T.A. Vanderah, J. Solid State Chem. 135, 312–321 (1998)

    Article  CAS  Google Scholar 

  19. A. Jana, T.K. Kundu, Mater. Lett. 61, 1544–1548 (2007)

    Article  CAS  Google Scholar 

  20. M. Yamaguchi, M. Watanabe, Y. Akishige, K. Inoue, T. Yagi, Physica B: Condens. Matter 219–220, 647–649 (1996)

    Article  Google Scholar 

  21. T.A. Colson, M.J.S. Spencer, I. Yarovsky, Comput. Mater. Sci. 34, 157–165 (2005)

    Article  CAS  Google Scholar 

  22. D. Kumar, C.D. Prasad, O. Parkash, J. Phys. Chem. Solids 51, 73–78 (1990)

    Article  CAS  Google Scholar 

  23. J. Wang, H. Zhang, D. Xue, Z.C. Li, J. Phys. D Appl. Phys. 42, 235103 (2009)

    Article  Google Scholar 

  24. J. Wang, H. Zhang, Y.Y. Li, Z.C. Li, J. Mater. Sci. Mater. Electron. 21, 811–816 (2010)

    Article  CAS  Google Scholar 

  25. Z.C. Li, H. Zhang, B. Bergmana, X.D. Zou, J. Eur. Ceram. Soc. 26, 2357–2364 (2006)

    Article  CAS  Google Scholar 

  26. (2010) www.webelements.com

  27. E. Mashkina, PhD thesis, University of Erlangen-Nürnberg, Germany, 2005

  28. E.D. Macklen, J. Phys. Chem. Solids 47, 1073–1079 (1986)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the National Natural Science Foundations of China (Nos. 50872155 and 51172287).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, D., Zhang, H., Li, Y. et al. Electrical properties of hexagonal BaTi1−x Fe x O3−δ (x = 0.1, 0.2, 0.3) ceramics with NTC effect. J Mater Sci: Mater Electron 23, 1306–1312 (2012). https://doi.org/10.1007/s10854-011-0589-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0589-1

Keywords

Navigation