Skip to main content
Log in

Microstructure and electrical properties of tantalum doped (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(Ba0.85Ca0.15)(Zr0.10Ti0.90)1−x Ta x O3 ceramics (BCZTT, 0 ≤ x ≤ 3.0 mol%) were prepared via a conventional solid-state reaction method, and the effect of Ta substitution on the microstructure and electrical properties of the BCZTT ceramics was investigated. A pure perovskite structure was obtained in all of these samples. The microstructure of the BCZT ceramics is strongly affected by Ta doping. Low-concentration Ta addition (x = 0.1 mol%) promotes the grain growth of the BCZT ceramics. However, high-concentration Ta addition (x > 0.5 mol%) effectively hinders the grain growth. The dielectric, ferroelectric and piezoelectric properties of the BCZT ceramics are improved by addition of a small amount of Ta. For the ceramics with x = 0.3 mol%, electrical performance reaches optimum: ε max = 7,770, T max (the temperature of the dielectric maximum) = 101.8 °C, P max = 17.9 μC/cm2, P r = 9.1 μC/cm2, E c = 0.54 kV/mm and d 33 = 303 pC/N. The T max of the BCZTT decreases with the increasing Ta concentration. The relaxor properties of undoped and Ta-doped BCZT ceramics were depicted, and the diffusivity increases with the increasing Ta contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.K. Panda, J. Mater. Sci. 44, 5049 (2009)

    Article  Google Scholar 

  2. J. Rodel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)

    Article  Google Scholar 

  3. D.Z. Xue, Y.M. Zhou, H.X. Bao, C. Zhou, J.H. Gao, X.B. Ren, J. Appl. Phys. 109, 054110 (2011)

    Article  Google Scholar 

  4. L.X. Zhang, W.F. Liu, W. Chen, X.B. Ren, J. Sun, E.A. Gurdal, S.O. Ural, K. Uchino, Appl. Phys. Lett. 101, 242903 (2012)

    Article  Google Scholar 

  5. R. Bathelt, T. Soller, K. Benkert, C. Schuh, A. Roosen, J. Eur. Ceram. Soc. 32, 3767 (2012)

    Article  Google Scholar 

  6. W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  7. J. Gao, D. Xue, Y. Wang, D. Wang, L. Zhang, H. Wu, S. Guo, H. Bao, C. Zhou, W. Liu, S. Hou, G. Xiao, X. Ren, Appl. Phys. Lett. 99, 092901 (2011)

    Article  Google Scholar 

  8. E. Venkata Ramana, A. Mahajan, M.P.F. Graça, S.K. Mendiratta, J.M. Monteiro, M.A. Valente, Mater. Res. Bull. 48, 4395 (2013)

    Article  Google Scholar 

  9. P. Wang, Y.X. Li, Y.Q. Lu, J. Eur. Ceram. Soc. 31, 2005 (2011)

    Article  Google Scholar 

  10. W.F. Bai, W. Li, B. Shen, J.W. Zhai, Key Eng. Mater. 512–515, 1385 (2012)

    Article  Google Scholar 

  11. J. Wu, D. Xiao, W. Wu, Q. Chen, J. Zhu, Z. Yang, J. Wang, Scr Mater. 65, 771 (2011)

    Article  Google Scholar 

  12. Y.R. Cui, X.Y. Liu, M.H. Jiang, Y.B. Hu, Q.S. Su, H. Wang, J. Mater. Sci. Mater. Electron. 23, 1342 (2012)

    Article  Google Scholar 

  13. C. Han, J.G. Wu, C.H. Pu, S. Qiao, B. Wu, J.G. Zhu, D.Q. Xiao, Ceram. Int. 38, 6359 (2012)

    Article  Google Scholar 

  14. Y.R. Cui, X.Y. Liu, M.H. Jiang, X.Y. Zhao, X. Shan, W.H. Li, C.L. Yuan, C.R. Zhou, Ceram. Int. 38, 4761 (2012)

    Article  Google Scholar 

  15. Y. Cui, C. Yuan, X. Liu, X. Zhao, X. Shan, J. Mater. Sci. Mater. Electron. 24, 654 (2012)

    Article  Google Scholar 

  16. Y.R. Cui, X.Y. Liu, C.L. Yuan, X. Zhai, Y.B. Hu, R.W. Li, J. Inorg. Mater. 27, 731 (2012)

    Article  Google Scholar 

  17. L.A. Xue, Y. Chen, E. Gilbart, R.J. Brook, J. Mater. Sci. 25, 1423 (1990)

    Google Scholar 

  18. R. Zuo, C. Ye, X. Fang, J. Li, J. Eur. Ceram. Soc. 28, 871 (2008)

    Article  Google Scholar 

  19. V.-Q. Nguyen, H.-S. Han, K.-J. Kim, D.-D. Dang, K.-K. Ahn, J.-S. Lee, J. Alloys Compd. 511, 237 (2012)

    Article  Google Scholar 

  20. S. Yun, X. Wang, J. Shi, D. Xu, J. Mater. Res. 24, 3073 (2011)

    Article  Google Scholar 

  21. P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 89, 8085 (2001)

    Article  Google Scholar 

  22. P.R. Ren, H.Q. Fan, X. Wang, J. Shi, J. Alloys Compd. 509, 6423 (2011)

    Article  Google Scholar 

  23. J.G. Wu, D.Q. Xiao, W.J. Wu, Q. Chen, J.G. Zhu, Z.C. Yang, J. Wang, J. Eur. Ceram. Soc. 32, 891 (2012)

    Article  Google Scholar 

  24. A. Gajović, J.V. Pleština, K. Žagar, M. Plodinec, S. Šturm, M. Čeh, J. Raman Spectrosc. 44, 412 (2013)

    Article  Google Scholar 

  25. H.-W. Cheng, X.-J. Zhang, S.-T. Zhang, Y. Feng, Y.-F. Chen, Z.-G. Liu, G.-X. Cheng, Appl. Phys. Lett. 85, 2319 (2004)

    Article  Google Scholar 

  26. O.A. Maslova, F.V. Shirokov, Y.I. Yuzyuk, M. El Marssi, M. Jain, N. Ortega, R.S. Katiyar, Phys. Solid State 56, 310 (2014)

    Article  Google Scholar 

  27. A.F. Solarte, N. Pellegri, O. de Sanctis, M.G. Stachiotti, J. Sol Gel. Sci. Technol. 66, 488 (2013)

    Article  Google Scholar 

  28. L.B. Ben, D.C. Sinclair, Appl. Phys. Lett. 98, 092907 (2011)

    Article  Google Scholar 

  29. G.A. Samara, J. Phys. Condens. Mater. 15, R367 (2003)

    Article  Google Scholar 

  30. R. Rai, I. Bdikin, M.A. Valente, A.L. Kholkin, Mater. Chem. Phys. 119, 539 (2010)

    Article  Google Scholar 

  31. J.N. Yang, P. Liu, X.B. Bian, H.X. Jing, Y.J. Wang, Y. Zhang, Y. Wu, W.H. Song, Mater. Sci. Eng. B Adv. Funct. Solid State Mater. 176, 260 (2011)

    Article  Google Scholar 

  32. F.L. Li, K.W. Kwok, J. Eur. Ceram. Soc. 33, 123 (2013)

    Article  Google Scholar 

  33. S.C. Panigrahi, P.R. Das, B.N. Parida, H.B.K. Sharma, R.N.P. Chaudhary, J. Mater. Sci. Mater. Electron. 24, 3275 (2013)

    Article  Google Scholar 

  34. W. Cao, C.A. Randall, J. Phys. Chem. Solids 57, 1499 (1996)

    Article  Google Scholar 

  35. N.M. Hagh, B. Jadidian, E. Ashbahian, A. Safari, IEEE Trans. Ultrason. Ferroelectr. 55, 214 (2008)

    Article  Google Scholar 

  36. J. Hao, W. Bai, W. Li, J. Zhai, C. Randall, J. Am. Ceram. Soc. 95, 1998 (2012)

    Article  Google Scholar 

  37. W. Li, X. Liu, J. Ma, Y. Wu, Y. Cui, J. Mater. Sci. Mater. Electron. 24, 1551 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 61176010 and No. 61172027, Guangdong Natural Science Foundation, the Research Foundation of IARC-SYSU under Grant No. IARC 2014-09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueli Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Zhang, Y. & Yang, S. Microstructure and electrical properties of tantalum doped (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 ceramics. J Mater Sci: Mater Electron 26, 909–915 (2015). https://doi.org/10.1007/s10854-014-2481-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2481-2

Keywords

Navigation