Skip to main content
Log in

Effect of Li- and Ta-doping on the ferroelectric properties of Na0.5K0.5NbO3 thin films prepared by a chelate route

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The effects of lithium and tantalum doping on the properties of Na0.5K0.5NbO3 (NKN) thin films were investigated. The films were fabricated by an optimized chelate route which offers the advantage of a simple and rapid solution synthesis. The optimization was achieved by investigating the effects of alkaline volatilization loss on film properties. In this way, undoped NKN thin films fabricated by this conventional method exhibited good ferroelectric properties (Pr ~ 8 μC/cm2, and Ec ~ 55 kV/cm for films annealed at 650 °C). The developed chelate route was then used to grow Li (5 %) and Ta (10 %) substituted thin films. Such structures allowed us to compare the effect of these dopant cations on phase formation, microstructure and ferroelectric properties. We show that both modifications produced a remarkable improvement on the ferroelectricity of the films. While the undoped material exhibited large leakage components in films annealed at 600 °C, films modified with Li or Ta presented well saturated ferroelectric hysteresis loops, indicating that those ions have a significant influence on the conducting process. The remnant polarizations of the Ta-doped films are greater than those of the Li-doped samples. This feature is however reversed for films annealed at low temperature (600 °C) due to the presence of a non-ferroelectric secondary phase in the Ta-doped composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maerder M, Damjanovic D, Setter N (2004) J Electroceram 13:385–392

    Article  Google Scholar 

  2. Takenaka T, Nagata H (2005) J Eur Ceram Soc 25:2693–2700

    Article  CAS  Google Scholar 

  3. Panda PK (2009) J Mater Sci 44:5049–5062

    Article  CAS  Google Scholar 

  4. Leontsev SO, Eitel RE (2010) Sci Technol Adv Mater 11:044302

    Article  Google Scholar 

  5. Lu Y, Li Y (2011) J Adv Dielectr 1:269–288

    Article  CAS  Google Scholar 

  6. Xiao D (2011) J Adv Dielectr 1(33):40

    Google Scholar 

  7. Guo YP, Kakimoto K, Ohsato H (2005) Mater Lett 59:241

    Article  CAS  Google Scholar 

  8. Kim MS, Jeong SJ, Song JS (2007) J Am Ceram Soc 90:3338

    Article  CAS  Google Scholar 

  9. Rubio-Marcos F, Ochoa P, Fernandez JF (2007) J Eur Ceram Soc 27:4125

    Article  CAS  Google Scholar 

  10. Chang YF, Yang ZP, Hou YT, Liu ZH, Wang ZL (2007) Appl Phys Lett 90:232905

    Article  Google Scholar 

  11. Saito Y, Takao H (2006) Ferroelectrics 338:1433

    Article  Google Scholar 

  12. Yang Z, Chang YF, Liu B, Wei LL (2006) Mater Sci Eng A 432:292

    Article  Google Scholar 

  13. Wu JG, Peng T, Wang YY, Xiao DQ, Zhu JM, Jin Y, Zhu J, Yu P, Wu L, Jiang YH (2008) J Am Ceram Soc 91:319

    Article  CAS  Google Scholar 

  14. Zhang SJ, Xia R, Shrout TR, Zang GZ, Wang JF (2006) J Appl Phys 100:104108

    Article  Google Scholar 

  15. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamaru M (2004) Nature 84:432

    Google Scholar 

  16. Kwak J, Kingon AI, Kim S-H (2012) Mater Lett 82:130–132

    Article  CAS  Google Scholar 

  17. Saito T, Wada T, Adachi H, Kanno I (2004) Jpn J Appl Phys 43:6627

    Article  CAS  Google Scholar 

  18. Ryu J, Choi JJ, Hahn BD, Park DS, Yoon WH, Kim KH (2007) Appl Phys Lett 90:152901

    Article  Google Scholar 

  19. Lai F, Li J-F (2007) Sol-Gel Sci Tech 42:287

    Article  CAS  Google Scholar 

  20. Tanaka K, Kakimoto KI, Ohsato H (2006) J Cryst Growth 294:209

    Article  CAS  Google Scholar 

  21. Kim K-T, Kim G-H, Woo J-C, Kim C-I (2007) Ferroelectrics 356:166–171

    Article  CAS  Google Scholar 

  22. Nakashima Y, Sakamoto W, Maiwa H, Shimura T, Yogo T (2007) Jpn J Appl Phys 46:L311

    Article  CAS  Google Scholar 

  23. Wang L, Ren W, Shi P, Chen X, Wu X, Yao X (2010) Appl Phys Lett 97:072902

    Article  Google Scholar 

  24. Abazari M, Choi T, Cheong S-W, Safari A (2010) J Phys D Appl Phys 43:025405

    Article  Google Scholar 

  25. Ahn CW, Jeong ED, Lee SY, Lee HJ, Kang SH, Kim W III (2008) Appl Phys Lett 93:212905

    Article  Google Scholar 

  26. Wang DY, Lin DM, Kwok KW, Chan NY, Dai JY, Li S, Chan HLW (2011) Appl Phys Lett 98:022902

    Article  Google Scholar 

  27. Lee SY, Ahn CW, Kim JS, Ullah A, Lee HJ, Hwang H-I, Choi JS, Park BH, Kim W III (2011) J Alloys Compd 509:L194

    Article  CAS  Google Scholar 

  28. Stachiotti MG, Machado R, Frattini A, Pellegri N, de Sanctis O (2005) J Sol-Gel Sci Technol 36:56–60

    Article  Google Scholar 

  29. Machado R, Santiago ML, Stachiotti MG, Frattini A, Pellegri N, Bolmaro R, de Sanctis O (2008) J Sol-Gel Sci Technol 48:294

    Article  CAS  Google Scholar 

  30. Santiango M, Stachiotti MG, Machado R, Pellegri N, de Sanctis O (2008) Ferroelectrics 370:85

    Article  Google Scholar 

  31. Tanaka K, Kakimoto K, Ohsato H (2007) J Eur Ceram Soc 27:3591

    Article  CAS  Google Scholar 

  32. Zhao P, Zhang B-P, Li J-F (2008) Scripta Mater 58:429–432

    Article  CAS  Google Scholar 

  33. Lai F, Li J-F, Zhu Z-X, Xu Y (2009) J Appl Phys 106:064101

    Article  Google Scholar 

  34. Zhou Y, Guo M, Zhang C, Zhang M (2009) Ceram Int 35:3253–3258

    Article  CAS  Google Scholar 

  35. Lin D, Kwok KW, Chan HLW (2008) Appl Phys A 91:167

    Article  CAS  Google Scholar 

  36. Machado R, Sepliarsky M, Stachiotti MG (2012) Phys Rev B 86:094118

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge financial support from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario. M.G.S. thanks support from CIUNR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Stachiotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solarte, A.F., Pellegri, N., de Sanctis, O. et al. Effect of Li- and Ta-doping on the ferroelectric properties of Na0.5K0.5NbO3 thin films prepared by a chelate route. J Sol-Gel Sci Technol 66, 488–496 (2013). https://doi.org/10.1007/s10971-013-3036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3036-3

Keywords

Navigation