Skip to main content
Log in

Competing effects of Ca doping on the phase transition and related properties in (Ba1–xCax)(Ti0.95Sn0.05)O3 ceramics

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

We present the competing effects of isovalent Ca doping into A-site on the properties of Ca-doped Ba(Ti,Sn)O3 ceramics. (Ba1–xCax)(Ti0.95Sn0.05)O3 (BCTS) ceramics with 0 ≤ x ≤ 0.06 were fabricated to investigate whether the increase in tetragonality, polarization and Curie temperature by Ca incorporation, which have been observed in Ca-doped BaTiO3 ceramics, would also occur in BCTS ceramics. We characterized the crystal structural, dielectric, and ferroelectric properties of the BCTS ceramics and strengthened ferroelectricity by the Ca incorporation was confirmed in the BCTS ceramics. However, at the same time, the BCTS ceramics exhibited a diffuse phase transition owing to the simultaneous occupation of the A- and B-sites, as evidenced by the unconventional trend of the critical exponent in the dielectric response and a monotonous decrease in strain hysteresis with increasing Ca content. We present a detailed analysis of these properties and propose competing roles of Ca doping in BCTS ceramics in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. T. Mitsui, W.B. Westphal, Dielectric and X-Ray studies of CaxBa1-xTiO3 and CaxSr1-xTiO3. Phys. Rev. 124, 1354–1359 (1961). https://doi.org/10.1103/PhysRev.124.1354

    Article  CAS  Google Scholar 

  2. J.N. Lin, T.B. Wu, Effects of isovalent substitutions on lattice softening and transition character of BaTiO3 solid solutions. J. Appl. Phys. 68, 985–993 (1990). https://doi.org/10.1063/1.346665

    Article  CAS  Google Scholar 

  3. D.C. Sinclair, J.P. Attfield, The influence of A-cation disorder on the Curie temperature of ferroelectric ATiO3 perovskites. Chem. Comm. (1999). https://doi.org/10.1039/A903680F

    Article  Google Scholar 

  4. S.H. Yoon, S.H. Kang, S.H. Kwon, K.H. Hur, Resistance degradation behavior of Ca-doped BaTiO3. J. Mater. Res. 25, 2135–2142 (2010). https://doi.org/10.1557/jmr.2010.0278

    Article  CAS  Google Scholar 

  5. D. Fu, M. Itoh, S.-Y. Koshihara, T. Kosugi, S. Tsuneyuki, Anomalous phase diagram of ferroelectric (Ba, Ca)TiO3 single crystals with giant electromechanical response. Phys. Rev. Lett. 100, 227601 (2008). https://doi.org/10.1103/PhysRevLett.100.227601

    Article  CAS  Google Scholar 

  6. T. Hoshina, T. Furta, T. Yamazaki, H. Takeda, T. Tsurumi, Grain size effect on dielectric properties of Ba0.92Ca0.08TiO3 ceramics. Jpn. J. Appl. Phys. Part 1 (2013). https://doi.org/10.7567/JJAP.52.09KC05

    Article  Google Scholar 

  7. A. Berenov, F. Le Goupil, N. Alford, Effect of ionic radii on the Curie temperature in Ba1-x-ySrxCayTiO3 compounds. Sci. Rep. 6, 28055 (2016). https://doi.org/10.1038/srep28055

    Article  CAS  Google Scholar 

  8. G.A. Samara, Pressure and temperature dependences of the dielectric properties of the perovskites BaTiO3 and SrTiO3. Phys. Rev. 151, 378–386 (1966). https://doi.org/10.1103/PhysRev.151.378

    Article  CAS  Google Scholar 

  9. R.E. Cohen, Origin of ferroelectricity in perovskite oxides. Science 358, 136–138 (1992). https://doi.org/10.1038/358136a0

    Article  CAS  Google Scholar 

  10. V. Buscaglia, C.A. Randall, Size and scaling effects in barium titanate. An overview. J. Eur. Ceram. Soc. 40, 3744–3758 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.01.021

    Article  CAS  Google Scholar 

  11. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602

    Article  CAS  Google Scholar 

  12. Y. Nahas, A. Akbarzadeh, S. Prokhorenko, S. Prosandeev, R. Walter, I. Kornev, J. Íñiguez, L. Bellaiche, Microscopic origins of the large piezoelectricity of leadfree (Ba, Ca)(Zr, Ti)O3. Nature Comm. 8, 15944 (2017). https://doi.org/10.1038/ncomms15944

    Article  CAS  Google Scholar 

  13. R. Yuan, Z. Liu, P.V. Balachandran, D. Xue, Y. Zhou, X. Ding, J. Sun, D. Xue, T. Lookman, Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning. Avd. Mater. 30, 1702884 (2018). https://doi.org/10.1002/adma.201702884

    Article  CAS  Google Scholar 

  14. Q. Wang, H.-Z. Yan, X. Zhao, C.-M. Wang, Polymorphic phase transition and piezoelectric performance of BaTiO3-CaSnO3 solid solutions. Actuators 19, 129 (2021). https://doi.org/10.3390/act10060129

    Article  Google Scholar 

  15. N.W. Kim, H.W. Lee, M. Muneeswaran, M. Kim, D. Kang, M. Ko, W.H. Nam, Y.S. Lim, Tailored electrostrain and related properties in (1–x)BaTiO3–xSrSnO3 Pb-free electroceramics. J. Am. Ceram. Soc. 105, 5751–5763 (2022). https://doi.org/10.1111/jace.18533

    Article  CAS  Google Scholar 

  16. L.-F. Zhu, B.-P. Zhang, X.-K. Zhao, L. Zhao, P.-F. Zhou, J.-F. Li, Enhanced piezoelectric properties of (Ba1-xCax)(Ti0.92Sn0.08)O3 lead-free ceramics. J. Am. Ceram. Soc. 96, 241–245 (2013). https://doi.org/10.1111/jace.12038

    Article  CAS  Google Scholar 

  17. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Enhanced ferroelectric properties in (Ba1-xCax)(Ti0.94O0.06)O3 lead-free ceramics. J. Eur. Ceram. Soc. 32, 517–520 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.09.020

    Article  CAS  Google Scholar 

  18. M. Chen, Z. Xu, R. Chu, H. Qiu, M. Li, Y. Liu, L. Shao, S. Ma, W. Ji, W. Li, S. Gong, G. Li, Enhanced piezoelectricity in broad composition range and the temperature dependence research of (Ba1−xCax)(Ti0.95Sn0.05)O3 piezoceramics. Physica B 433, 43–47 (2014). https://doi.org/10.1016/j.physb.2013.10.014

    Article  CAS  Google Scholar 

  19. V. Petříček, M. Dušek, L. Palatinus, Crystallographic computing system JANA2006: general features. Z. Kristallogr. 229, 345–352 (2014). https://doi.org/10.1515/zkri-2014-1737

    Article  CAS  Google Scholar 

  20. G. Arlt, D. Hennings, G. de With, Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 1619–1625 (1985). https://doi.org/10.1063/1.336051

    Article  CAS  Google Scholar 

  21. X. Wei, Y. Feng, X. Yao, Dielectric relaxation behavior in barium stannate titanate ferroelectric ceramics with diffused phase transition. J. Appl. Phys. 83, 2031–2033 (2003). https://doi.org/10.1063/1.1609037

    Article  CAS  Google Scholar 

  22. X. Wei, Y. Feng, X. Wan, X. Yao, Evolvement of dielectric relaxation of barium stannate titanate ceramics. Ceram. Int. 30, 1397–1400 (2004). https://doi.org/10.1016/j.ceramint.2003.12.088

    Article  CAS  Google Scholar 

  23. V.V. Shvartsman, W. Kleeman, J. Dec, Z.K. Xu, S.G. Lu, Diffuse phase transition in BaTi1−xSnxO3: an intermediate state between ferroelectric and relaxor behavior. J. Appl. Phys. 99, 124111 (2006). https://doi.org/10.1063/1.2207828

    Article  CAS  Google Scholar 

  24. C. Lei, A.A. Bokov, Z.-G. Ye, Ferroelectric to relaxor crossover and dielectric phase diagram in the BaTiO3–BaSnO3 system. J. Appl. Phys. 101, 084105 (2007). https://doi.org/10.1063/1.2715522

    Article  CAS  Google Scholar 

  25. V. Mueller, H. Beige, H.-P. Abicht, Non-Debye dielectric dispersion of barium titanate stannate in the relaxor and diffuse phase-transition state. Appl. Phys. Lett. 84, 1341–1343 (2004). https://doi.org/10.1063/1.1649820

    Article  CAS  Google Scholar 

  26. I. Yamada, A. Takamatsu, H. Ikeno, Complementary evaluation of structure stability of perovskite oxides using bond-valence and density-functional-theory calculations. Sci. Tech. Adv. Mater. 19, 101–107 (2018). https://doi.org/10.1080/14686996.2018.1430449

    Article  CAS  Google Scholar 

  27. P.S. Kadhane, B.G. Baraskar, T.C. Darvade, O.A. Ramdasi, M.D. Samsuzzaman, R.C. Kambale, Investigation of structural phase transition, Curie temperature and energy storage density of Ba0.97Ca0.03Ti1−xSnxO3 electroceramics. J. Kor. Ceram. Soc. 59, 578–588 (2022). https://doi.org/10.1007/s43207-022-00189-x

    Article  CAS  Google Scholar 

  28. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 44, 55–61 (1982). https://doi.org/10.1080/00150198208260644

    Article  CAS  Google Scholar 

  29. J. Ravez, A. Simon, Some solid state chemistry aspects of lead-free relaxor ferroelectrics. J. Solid State Chem. 162, 260–265 (2001). https://doi.org/10.1006/jssc.2001.9285

    Article  CAS  Google Scholar 

  30. J. Ravez, A. Simon, Lead-free ferroelectric relaxor ceramics derived from BaTiO3. Eur. Phys. J. AP. 11, 9–13 (2000). https://doi.org/10.1051/epjap:2000140

    Article  CAS  Google Scholar 

  31. V.V. Shvartsman, D.C. Lupascu, D.J. Green, Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc. 95, 1–26 (2012). https://doi.org/10.1111/j.1551-2916.2011.04952.x

    Article  CAS  Google Scholar 

  32. S.-H. Yoon, Y. Park, C.-H. Kim, D.-Y. Kim, Effect of Ca incorporation on the dielectric nonlinear behavior of (Ba, Ca)TiO3 multi layer ceramic capacitors. Appl. Phys. Lett. 105, 242902 (2014). https://doi.org/10.1063/1.4904475

    Article  CAS  Google Scholar 

  33. D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998). https://doi.org/10.1088/0034-4885/61/9/002

    Article  CAS  Google Scholar 

  34. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Cerem. Soc. 82, 797–818 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01840.x

    Article  CAS  Google Scholar 

  35. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective. J. Electroceram. 29, 71–93 (2012). https://doi.org/10.1007/s10832-012-9742-3

    Article  CAS  Google Scholar 

  36. A. Pramanick, D. Damjanovic, J.E. Daniels, J. Nino, J.L. Jones, Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading. J. Am. Ceram. Soc. 94, 293–309 (2011). https://doi.org/10.1111/j.1551-2916.2010.04240.x

    Article  CAS  Google Scholar 

  37. G. Tutuncu, B. Li, K. Bowman, J.L. Jones, Domain wall motion and electromechanical strain in lead-free piezoelectrics: insight from the model system (1–x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 using in-situ high-energy X-ray diffraction during application of electric fields. J. Appl. Phys. 115, 144104 (2014). https://doi.org/10.1063/1.4870934

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Institute for Advancement of Technology (KIAT) through the Competency Development Program for Industry Specialist (P0012451) by Ministry of Trade, Industry and Energy and also supported by Basic Science Research Program (2020R1I1A3052042) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Soo Lim.

Ethics declarations

Conflict of interest

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, Y.S., Sasikumar, S., Lee, H.W. et al. Competing effects of Ca doping on the phase transition and related properties in (Ba1–xCax)(Ti0.95Sn0.05)O3 ceramics. J. Korean Ceram. Soc. 61, 170–177 (2024). https://doi.org/10.1007/s43207-023-00341-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00341-1

Keywords

Navigation