Skip to main content
Log in

Photoelectrochemically active surfactant free single step hydrothermal mediated titanium dioxide nanorods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) nanorods have been successfully synthesized by a simple and cost-effective hydrothermal deposition method onto the conducting glass substrates. Effect of reaction temperature on the growth of TiO2 nanorods have been investigated by varying the reaction temperature from 140 to 200 °C. The optical, structural, compositional, morphological properties of the synthesized films are studied. X-ray diffraction patterns reveal the formation of polycrystalline TiO2 with the tetragonal crystal structure possessing rutile phase. The chemical composition and valence states of the constituent elements were analysed by X-ray photoelectron spectroscopy. Field emission scanning electron microscopy images shows the formation of nanorod-like structure with variation in diameter. The optical band gap energy was found to increase from 3.07 to 3.15 eV with the increase in reaction temperature exhibiting a blue shift. The films were photo electrochemically active with the maximum current density of 216 µA/cm2 for the sample prepared at 180 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.V. Kamat, K. Tvrdy, D.R. Baker, J.G. Radich, Chem. Rev. 110, 6664 (2010)

    Article  Google Scholar 

  2. J.J. Wu, C.C. Yu, J. Phys. Chem. B 108, 3377 (2004)

    Article  Google Scholar 

  3. Y. Li, M. Guo, M. Zhang, X. Wang, Mater. Res. Bull. 44, 1232 (2009)

    Article  Google Scholar 

  4. D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Adv. Mater. 18, 2807 (2006)

    Article  Google Scholar 

  5. A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, Dhayalan Velauthapillai, J. Mater. Sci. Mater. Electron. 25, 2724 (2014)

  6. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  Google Scholar 

  7. X.T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, A. Fujishima, Chem. Mater. 17, 696 (2005)

    Article  Google Scholar 

  8. A. Welte, C. Waldauf, C. Brabec, P. Wellmann, Thin Solid Films 516, 7256 (2008)

    Article  Google Scholar 

  9. D. Monllor-Satoca, R. Gomez, M. González-Hidalgo, P. Salvador, Catal. Today 129, 247 (2007)

    Article  Google Scholar 

  10. I.C. Baek, M. Vithal, J.A. Chang, J.H. Yum, M.K. Nazeeruddin, M. Grätzel, Y.C. Chung, S. Seok, Electrochem. Commun. 11, 909 (2009)

    Article  Google Scholar 

  11. L. Yuxiang, Z. Mei, G. Min, W. Xidong, Rare Met. 29, 286 (2010)

    Article  Google Scholar 

  12. S.S. Mali, S.K. Desai, D.S. Dalavi, C.A. Betty, P.N. Bhosale, P.S. Patil, Photochem. Photobiol. 10, 1652 (2011)

    Article  Google Scholar 

  13. H.S. Kim, Y.J. Kim, W. Lee, S.H. Kang, Appl. Surf. Sci. 273, 226 (2013)

    Article  Google Scholar 

  14. S.A. Pawar, R.S. Devan, D.S. Patil, V.V. Burungale, T.S. Bhat, S.S. Mali, S.W. Shin, J.E. Ae, C.K. Hong, Y.R. Ma, J.H. Kim, P.S. Patil, Electrochim. Acta 117, 470 (2014)

    Article  Google Scholar 

  15. M. M. Rashad, A. E. Shalan, J. Mater. Sci. Mater. Electron. 24, 3189 (2013)

  16. A. Vale, N. Chaure, M. Simonds, A. K. Ray, N. Bricklebank, J. Mater. Sci. Mater. Electron. 17, 851 (2006)

  17. M.M. Wu, G. Lin, D.H. Chen, G.G. Wang, D. He, S.H. Feng, R.R. Xu, Chem. Mater. 14, 1974 (2002)

    Article  Google Scholar 

  18. J.G. Li, T. Ishigaki, X.D. Sun, J. Phys. Chem. C 111, 4969 (2007)

    Article  Google Scholar 

  19. W.J. Guo, C. Xu, X. Wang, S. Wang, C. Pan, C. Lin, Z.L. Wang, J. Am. Chem. Soc. 134, 4437 (2012)

    Article  Google Scholar 

  20. S.S. Mali, C.A. Betty, P.N. Bhosale, P.S. Patil, Cryst. Eng. Comm. 13, 6349 (2011)

    Article  Google Scholar 

  21. S.S. Mali, H. Kim, C.S. Shim, P.S. Patil, J.H. Kim, C.K. Hong, Sci. Rep. (2013). doi:10.1038/srep03004

    Google Scholar 

  22. J.G. Yu, J.J. Fan, K.L. Lv, Nanoscale 2, 2144 (2010)

    Article  Google Scholar 

  23. X. Wu, Z. Chen, G.Q. Lu, L. Wang, Adv. Funct. Mater. 21, 4166 (2011)

    Article  Google Scholar 

  24. M.H. Jung, M.J. Chu, M.G. Kang, Chem. Comm. 48, 5016 (2012)

    Article  Google Scholar 

  25. B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)

    Article  Google Scholar 

  26. S. S Thind, G. Wu, M. Tian, A. Chen, Nanotechnology 23, 475706 (2012)

  27. H. Liu, D. Ding, C. Ning, Z. Li, Nanotechnology 23, 015502 (2012)

    Article  Google Scholar 

  28. R.S. Devan, W.D. Ho, C.H. Chen, H.W. Shiu, C.H. Ho, C.L. Cheng, S.Y. Wu, Y. Liou, Y.R. Ma, Nanotechnology 20, 445708 (2009)

    Article  Google Scholar 

  29. J.A. Rengifo-Herrera, E. Mielczarski, N.C. Castillo, J. Kiwi, C. Pulgarin, Appl. Catal. B 84, 448 (2008)

    Article  Google Scholar 

  30. Y. Wang, L. Zhang, K. Deng, X. Chen, Z. Zou, J. Phys. Chem. C 111, 2709 (2007)

    Article  Google Scholar 

  31. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Surf. Coat. Technol. 122, 73 (1999)

    Article  Google Scholar 

  32. O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32, 33 (2004)

    Article  Google Scholar 

  33. D. Mardare, M. Tasca, M. Delibas, G.I. Rusu, Appl. Surf. Sci. 156, 200 (2000)

    Article  Google Scholar 

  34. H.L. Ma, J.Y. Yang, Y. Dai, Y.B. Zhang, B. Lu, G.H. Ma, Appl. Surf. Sci. 253, 7497 (2007)

    Article  Google Scholar 

  35. S.S. Mali, P.S. Shinde, C.A. Betty, P.N. Bhosale, W.J. Lee, P.S. Patil, Appl. Surf. Sci. 257, 9737 (2011)

    Article  Google Scholar 

  36. V. Subramanian, E. Wolf, P.V. Kamat, J. Am. Chem. Soc. 126, 4943 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Human Resources Development program (No. 20124010203180) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea government Ministry of Trade, Industry and Energy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. H. Kim or P. S. Patil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, T.S., Devan, R.S., Mali, S.S. et al. Photoelectrochemically active surfactant free single step hydrothermal mediated titanium dioxide nanorods. J Mater Sci: Mater Electron 25, 4501–4511 (2014). https://doi.org/10.1007/s10854-014-2194-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2194-6

Keywords

Navigation