Skip to main content
Log in

Low-temperature sintering and piezoelectric properties of Pb(Fe2/3W1/3)O3–added Pb(Zn1/3Nb2/3)O3–Pb(Ni1/3Nb2/3)O3–Pb(Zr, Ti)O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Low-temperature sintering of (a–x)Pb(Zr0.48Ti0.52)O3–bPb(Ni1/3Nb2/3) O3–cPb(Zn1/3Nb2/3)O3–xPb(Fe2/3W1/3)O3 (a + b + c + x = 1, 0.06 ≤ x ≤ 0.10) ceramics were prepared through two-step synthesis process using perovskites-structured ferroelectric materials Pb(Fe2/3W1/3)O3 (PFW) as a sintering aid. The effects of PFW content on the densification, microstructure, phase structure, dielectric and piezoelectric properties of the ceramics were investigated. The sintering temperature was reduced from 1,180 °C (without PFW addition) to 940 °C when the material was PFW-doped. PFW-doping increased the sintered density and the average grain size of PFW–PNN–PZN–lead zirconate titanate ceramics. The ceramics sintered at 940 °C for 4 h with x = 0.08 exhibited favorable properties, which were listed as follows: d33 = 496pC/N, εT 33/ε0 = 3,119, tanδ = 2.1 % and Curie temperature = 242 °C. These values indicated that the newly developed composition might be suitable for multilayer piezoelectric devices application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Wang, C. Mao, G. Wang, G. Du, R. Liang, X. Dong, J. Am. Ceram. Soc. 96, 24–27 (2013)

    Article  Google Scholar 

  2. G. Fan, M. Shi, W. Lu, Y. Wang, F. Liang, J. Eur. Ceram. Soc. 34, 23–28 (2014)

    Article  Google Scholar 

  3. J.M. Kim, J.S. Kim, C.I. Cheon, J. Ceram. Process. Res. 12, 12–15 (2011)

    Google Scholar 

  4. T. Hayashi, J. Tomizawa, T. Hasegawa, Y. Akiyama, J. Eur. Ceram. Soc. 24, 1037–1039 (2004)

    Article  Google Scholar 

  5. S.B. Seo, S.H. Lee, C.B. Yoon, G.T. Park, H.E. Kim, J. Am. Ceram. Soc. 87, 1238–1243 (2004)

    Article  Google Scholar 

  6. E. Nielsen, E. Ringgaard, M. Kosec, J. Eur. Ceram. Soc. 22, 1847–1855 (2002)

    Article  Google Scholar 

  7. A. Banerjee, A. Bandyopadhyay, S. Bose, J. Am. Ceram. Soc. 89, 1594–1600 (2006)

    Article  Google Scholar 

  8. A. Ngamjarurojana, S. Ural, S. Park, S. Ananta, R. Yimnirun, K. Uchino, Ceram. Int. 34, 705–708 (2008)

    Article  Google Scholar 

  9. J.Y. Lee, J.W. Choi, M.G. Kang, S.J. Kim, T.K. Ko, S.J. Yoon, J. Electroceram. 23, 572–575 (2009)

    Article  Google Scholar 

  10. D. Wan, Q. Li, J.Y. Choi, J.W. Choi, Y. Yang, S.J. Yoon, Jpn. J. Appl. Phys. 49, 0715031–0715036 (2010)

    Google Scholar 

  11. C.H. Nam, H.Y. Park, I.T. Seo, J.H. Choi, M.R. Joung, S. Nahm, H.J. Lee, Y.H. Kim, T.H. Sung, J. Am. Ceram. Soc. 94, 3442–3448 (2011)

    Article  Google Scholar 

  12. J. Li, Bull. Mater. Sci. 36, 877–881 (2013)

    Article  Google Scholar 

  13. X. Chao, D. Ma, R. Gu, Z. Yang, J. Alloys Compd. 491, 698–702 (2010)

    Article  Google Scholar 

  14. H. Li, Z. Yang, L. Wei, Y. Chang, Mater. Res. Bull. 44, 638–643 (2009)

    Article  Google Scholar 

  15. C.C. Tsai, S.Y. Chu, C.S. Hong, S.F. Chen, J. Eur. Ceram. Soc. 31, 2013–2022 (2011)

    Article  Google Scholar 

  16. C.W. Ahn, S.Y. Noh, S. Nahm, J. Ryu, K. Uchino, S.J. Yoon, J.S. Song, Jpn. J. Appl. Phys. 42, 5676 (2003)

    Article  Google Scholar 

  17. X. Chao, Z. Yang, L. Xiong, Z. Li, J. Alloys Compd. 509, 512–517 (2011)

    Article  Google Scholar 

  18. B.M. Jin, I.W. Kim, J.S. Kim, D.S. Lee, C.W. Ahn, J.H. Kwon, J.S. Lee, J.S. Song, S.J. Jeong, J. Electroceram. 15, 119–122 (2005)

    Article  Google Scholar 

  19. K. Shiratsuyu, K. Hayashi, A. Ando, Y. Sakabe, Jpn. J. Appl. Phys. 39, 5609 (2000)

    Article  Google Scholar 

  20. N.J. Donnelly, T.R. Shrout, C.A. Randall, J. Am. Ceram. Soc. 92, 1203–1207 (2009)

    Article  Google Scholar 

  21. B.H. Kim, J.H. Park, B. Kim, D.-K. Kwon, Met. Mater. Int. 18, 1067–1072 (2012)

    Article  Google Scholar 

  22. S.Y. Yoo, J.Y. Ha, S.J. Yoon, J.W. Choi, J. Eur. Ceram. Soc. 33, 1769–1778 (2013)

    Article  Google Scholar 

  23. Q. Liu, Q. Sun, W. Ma, M. Li, Q. Xu, Q. Zhang, J. Eur. Ceram. Soc. 34, 1181–1189 (2014)

    Article  Google Scholar 

  24. Z.G. Ye, H. Schmid, J. Cryst. Growth 167, 628–637 (1996)

    Article  Google Scholar 

  25. X. Chao, Z. Yang, G. Li, Y. Cheng, Sens. Actuators, A: Physical 144, 117–123 (2008)

    Article  Google Scholar 

  26. J. Du, J. Qiu, K. Zhu, H. Ji, X. Pang, J. Luo, Mater. Lett. 66, 153–155 (2012)

    Article  Google Scholar 

  27. Y.D. Hou, L.M. Chang, M.K. Zhu, X.M. Song, H. Yan, J. Appl. Phys. 102, 084507 (2007)

    Article  Google Scholar 

  28. B.K. Gan, K. Yao, Ceram. Int. 35, 2061–2067 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibing Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Ma, W., Li, Q. et al. Low-temperature sintering and piezoelectric properties of Pb(Fe2/3W1/3)O3–added Pb(Zn1/3Nb2/3)O3–Pb(Ni1/3Nb2/3)O3–Pb(Zr, Ti)O3 ceramics. J Mater Sci: Mater Electron 25, 3695–3702 (2014). https://doi.org/10.1007/s10854-014-2077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2077-x

Keywords

Navigation