Skip to main content
Log in

Effect of Er3+ ion incorporation on the structural, photoluminescence, and ferroelectric properties of K0.5Na0.5NbO3 ceramic for optoelectronic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The lead-free ceramics K0.5Na0.5NbO3: x wt% Er3+ (x = 0, 1, 2, 3 and 4) were produced via solid-state method. The ceramic was sintered at 1100 °C to produce a pure-phase perovskite with an orthorhombic structure. No extra phases in the XRD spectra demonstrate that all the Er3+ ions have dispersed into the host lattice. At room temperature, PL emission spectra were examined under the wavelengths 488 and 980 nm. In both emission spectra, green emission bands (528 and 549 nm) and slightly faint red emission bands (662 nm) were found. Observing the effect of pump power revealed that two photons are involved in the emission process. The time decay profile indicates an average lifetime of Er3+ ions is 25.05 μs. The ferroelectric hysteresis loop at room temperature showed decent shapes with good remnant. Thus, by combining the optical and ferroelectric properties, KNN may have potential applications to be employed in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The above-mentioned authors have all the relevant data associated with this research work and will be dedicated to sharing that if they are asked to do so in the future.

References

  1. R. Groß, D. Bunke, C.-O. Gensch, S. Zangl, and A. Manhart, Study on Hazardous Substances in Electrical and Electronic Equipment, Not Regulated by the RoHS Directive Final Report Content, 2008

  2. X. Vendrell, J.E. García, X. Bril, D.A. Ochoa, L. Mestres, G. Dezanneau, Improving the functional properties of (K0.5Na0.5)NbO3 piezoceramics by acceptor doping. J. Eur. Ceram. Soc. 35(1), 125–130 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.08.033

    Article  Google Scholar 

  3. H. Wu, S. Shi, X. Liu, H. Wang, J. Xu, L. Yang, W. Qiu, S. Zhou, Photoluminescence and outstanding transparent in Er3+-doped (K0.5Na0.5)NbO3-(Sr0.5Ba0.5)(Bi0.5Nb0.5)O3 ceramics. J. Mater. Sci. Mater. Electron. 34, 612 (2023). https://doi.org/10.1007/s10854-023-10021-9

    Article  Google Scholar 

  4. J.P. Sharma, D. Kumar, A.K. Sharma, Structural and dielectric properties of pure potassium sodium niobate (KNN) lead-free ceramics. Solid State Commun. (2021). https://doi.org/10.1016/j.ssc.2021.114345

    Article  Google Scholar 

  5. Q. Zhang, L. Luo, J. Gong, P. Du, W. Li, G. Yuan, Photoluminescence, thermoluminescence and reversible photoluminescence modulation of multifunctional optical materials Pr3+ doped KxNa1-xNbO3 ferroelectric ceramics. J. Eur. Ceram. Soc. 40(12), 3946–3955 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.05.003

    Article  Google Scholar 

  6. Y.Y.S. Cheng, L. Liu, Y. Huang, L. Shu, Y.X. Liu, L. Wei, J.F. Li, All-inorganic flexible (K, Na)NbO3-based lead-free piezoelectric thin films spin-coated on metallic foils. ACS Appl. Mater. Interfaces 13(33), 39633–39640 (2021). https://doi.org/10.1021/acsami.1c11418

    Article  Google Scholar 

  7. M. Dolhen, A. Mahajan, R. Pinho, M.E. Costa, G. Trolliard, P.M. Vilarinho, Sodium potassium niobate (K0.5Na0.5NbO3, KNN) thick films by electrophoretic deposition. RSC Adv. 5(6), 4698–4706 (2015). https://doi.org/10.1039/c4ra11058g

    Article  ADS  Google Scholar 

  8. W. Li, D. Wang, X. Li, P. Li, P. Fu, C. Hu, J. Hao, W. Li, Q. Zhang, Optical temperature sensing properties and thermoluminescence behavior in Er-modified potassium sodium niobate-based multifunctional ferroelectric ceramics. J. Mater. Chem. C. Mater. 10(33), 11891–11902 (2022). https://doi.org/10.1039/d2tc01268e

    Article  Google Scholar 

  9. L. Xiang, H. Gangbin, W. Huangtao, S. Shaoyang, W. Hua, X. Jiwen, Y. Ling, Q. Wei, Transmittance, photoluminescence and electrical properties in Er-doped 0.98K0.5Na0.5NbO3-0.02Sr(Yb0.5Ta0.5)O3 ferroelectric ceramics. J. Electron. Mater. 51(7), 3476–3484 (2022). https://doi.org/10.1007/s11664-022-09626-3

    Article  Google Scholar 

  10. X. Wu, S. Lu, K.W. Kwok, Photoluminescence, electro-optic response and piezoelectric properties in pressureless-sintered Er-doped KNN-based transparent ceramics. J. Alloys Compd. 695, 3573–3578 (2017). https://doi.org/10.1016/j.jallcom.2016.11.409

    Article  Google Scholar 

  11. A. Banwal, R. Bokolia, Efficient tunable temperature sensitivity in thermally coupled levels of Er3+/Yb3+ co-doped BaBi2Nb2O9 ferroelectric ceramic. J. Lumin. 263, 120071 (2023). https://doi.org/10.1016/j.jlumin.2023.120071

    Article  Google Scholar 

  12. S. Kumar, N. Thakur, Effect of alkali metal (Na, K) ion ratio on structural, optical and photoluminescence properties of K0.5Na0.5NbO3 ceramics prepared by sol-gel technique. Bull. Mater. Sci. (2021). https://doi.org/10.1007/s12034-020-02341-x

    Article  Google Scholar 

  13. S. Bairagi, S.W. Ali, Effects of surface modification on electrical properties of KNN nanorod-incorporated PVDF composites. J. Mater. Sci. 54, 11462–11484 (2014). https://doi.org/10.1007/s10853-019-03719-x

    Article  ADS  Google Scholar 

  14. Y. Zhang, L. Duan, A. Zhang, D. Wang, R. Chu, Z. Xu, G. Li, C. Zhang, Photoluminescence, electrical properties and electron band structure of (Ho, Yb)3+ co-doped SrBi4Ti4O15 multifunctional ceramics. Ceram. Int. 48(7), 9248–9257 (2022). https://doi.org/10.1016/j.ceramint.2021.12.111

    Article  Google Scholar 

  15. R. Bokolia, O.P. Thakur, V.K. Rai, S.K. Sharma, K. Sreenivas, Dielectric, ferroelectric and photoluminescence properties of Er3+ doped Bi4Ti3O12 ferroelectric ceramics. Ceram. Int. 41(4), 6055–6066 (2015). https://doi.org/10.1016/j.ceramint.2015.01.062

    Article  Google Scholar 

  16. X. Wu, C.M. Lau, K.W. Kwok, Effect of phase transition on photoluminescence of Er-doped KNN ceramics. J. Lumin. 155, 343–350 (2014). https://doi.org/10.1016/j.jlumin.2014.07.005

    Article  Google Scholar 

  17. M. Narwan, A. Banwal, R. Sharma, R. Bokolia, Non-invasive thermal sensing and improved recoverable energy storage density of Bi0.5Na0.5TiO3: Er3+ doped multifunctional ferroelectric ceramic. J. Lumin. 265, 120236 (2024). https://doi.org/10.1016/j.jlumin.2023.120236

    Article  Google Scholar 

  18. J. Wangi, Y. Sun, S. Shi, H. Wang, J. Xu, L. Yang, W. Qi, Effects of Er3+ doping on the structure and electro-optical properties of 0.94(K0.5Na0.5)NbO3–0.06Sr(Zn1/3Nb2/3)O3 ceramics. Bull. Mater. Sci. (2022). https://doi.org/10.1007/s12034-021-02596-y

    Article  Google Scholar 

  19. L.N. Liu, X.M. Chen, R.Y. Jing, H.L. Lian, W.W. Wu, Y.P. Mou, P. Liu, Electrical and photoluminescence properties of (Bi0.5−x/0.94Erx/0.94Na0.5)0.94Ba0.06TiO3 lead-free ceramics. J. Mater. Sci. Mater. Electron. 30, 5233–5239 (2019). https://doi.org/10.1007/s10854-019-00822-2

    Article  Google Scholar 

  20. C. Lin, X. Wu, M. Lin, Y. Huang, J. Li, Optical, luminescent and optical temperature sensing properties of (K0.5Na0.5)NbO3-ErBiO3 transparent ceramics. J. Alloy. Compd. 706, 156–163 (2017). https://doi.org/10.1016/j.jallcom.2017.02.245

    Article  Google Scholar 

  21. Y.J. Du, L.I.D.J. Martin, D. Poelman, Reversible yellow-gray photochromism in potassium-sodium niobate-based transparent ceramics. J. Eur. Ceram. Soc. 41, 1925–1933 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.10.046

    Article  Google Scholar 

  22. L.N. Liu, X.M. Chen, Y.D. Xu, H.L. Lian, P. Liu, Light-triggered “on-off” switchable dielectric constant in (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Appl. Phys. Lett. 123, 022904 (2023). https://doi.org/10.1063/5.0153351

    Article  ADS  Google Scholar 

  23. M.S. El-Eskandarany, Mechanically induced solid-state reduction. Mech. Alloy. (2015). https://doi.org/10.1016/B978-1-4557-7752-5.00006-1

    Article  Google Scholar 

  24. L. Kozielski, K. Feliksik, B. Wodecka-Duś, D. Szalbot, S. Tutu, Hot pressed K0.5Na0.5NbO3 material for piezoelectric transformer for energy harvesting. Arch. Metall. Mater. 63(3), 1275–1280 (2018). https://doi.org/10.24425/123801

    Article  Google Scholar 

  25. A. Banwal, R. Bokolia, Phase evolution and microstructure of BaBi2Nb2O9 ferroelectric ceramics. Mater. Today Proc. 46, 10121–10124 (2021). https://doi.org/10.1016/j.matpr.2020.09.380

    Article  Google Scholar 

  26. H.C. Thong, C. Zhao, Z. Zhou, C.F. Wu, Y.X. Liu, Z.Z. Du, J.F. Li, W. Gong, K. Wang, Technology transfer of lead-free (K, Na)NbO3-based piezoelectric ceramics. Mater. Today 29, 37–48 (2019). https://doi.org/10.1016/j.mattod.2019.04.016

    Article  Google Scholar 

  27. A. Dahiya, O. P. Thakur, and J. K. Juneja, Sensing and actuating applications of potassium sodium niobate: Use of potassium sodium niobate in sensor and actuator, in Proc. of the Int. Conf. on Sens. Tech. ICST, pp. 383–386, (2013), doi: https://doi.org/10.1109/ICSensT.2013.6727680

  28. Q. Jin, M. Jiang, S. Han, Y. Yan, Microstructure, optical and electrical properties of Bi and Ba co-doped K0.52Na0.48NbO3 transparent ceramics. J. Mater. Sci. Mater. Electron. 29(15), 13407–13417 (2018). https://doi.org/10.1007/s10854-018-9466-5

    Article  Google Scholar 

  29. S. Dwivedi, T. Pareek, S. Kumar, Structure, dielectric, and piezoelectric properties of K0.5Na0.5NbO3-based lead-free ceramics. RSC Adv. 8(43), 24286–24296 (2018). https://doi.org/10.1039/c8ra04038a

    Article  ADS  Google Scholar 

  30. L. Gao, Z. Liu, P. Ren, R. Liang, T. Li, K. Guo, B. Xie, J. Lu, P. Mao, J. Tian, L. Shu, Inhibiting oxygen vacancies and twisting NbO6 octahedron in erbium modified KNN-based multifunctional ceramics. J. Materiomics (2023). https://doi.org/10.1016/j.jmat.2023.05.007

    Article  Google Scholar 

  31. E. Makagon, O. Kraynis, R. Merkle, J. Maier, I. Lubomirsky, Non-classical electrostriction in hydrated acceptor doped BaZrO3: proton trapping and dopant size effect. Adv. Funct. Mater. 31, 2104188 (2021). https://doi.org/10.1002/adfm.202104188

    Article  Google Scholar 

  32. H. Sun, Q. Zhang, X. Wang, M. Gu, Green and red upconversion luminescence of Er3+-doped K0.5Na0.5NbO3 ceramics. Ceram. Int. 40(2), 2581–2584 (2014). https://doi.org/10.1016/j.ceramint.2013.10.089

    Article  Google Scholar 

  33. A. Banwal, R. Bokolia, Enhanced upconversion luminescence and optical temperature sensing performance in Er3+ doped BaBi2Nb2O9 ferroelectric ceramic. Ceram. Int. 48(2), 2230–2240 (2022). https://doi.org/10.1016/J.CERAMINT.2021.09.314

    Article  Google Scholar 

  34. W.U. Xiao, Rare-earth-doped KNN-based ceramics for photoluminescent and electro-optic applications (The Hong Kong Polytechnic College, Hong Kong, 2015)

    Google Scholar 

  35. D. Peng, H. Zou, Upconversion luminescence, ferroelectrics and piezoelectrics of Er doped SrBi4Ti4O15. AIP Adv. (2012). https://doi.org/10.1063/1.4773318

    Article  Google Scholar 

  36. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Improved piezoelectric property and bright upconversion luminescence in Er doped (Ba0.99Ca0.01)(Ti0.98Zr0.02)O3 ceramics. J. Alloys Compd. 583, 305–308 (2014). https://doi.org/10.1016/j.jallcom.2013.08.103

    Article  Google Scholar 

  37. H. Liu, J. Wang, H. Wang, J. Xu, C. Zhou, W. Qiu, Er3+ and Sr(Bi0.5Nb0.5)O3-modified (K0.5Na0.5)NbO3: a new transparent fluorescent ferroelectric ceramic with high light transmittance and good luminescence performance. Ceram. Int. 48(3), 4230–4237 (2022). https://doi.org/10.1016/j.ceramint.2021.10.215

    Article  Google Scholar 

  38. Z. Cao, J. Wang, C. Zhang, X. Mao, L. Luo, Flexible piezoelectric nanogenerator based on the Er3+ doped lead-free (Na0.5Bi0.5)TiO3-BaTiO3 piezoelectric nanofibers with strong upconversion luminescence. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.165766

    Article  Google Scholar 

  39. M.K. Mahata, T. Koppea, T. Mondal, C. Brüsewitza, K. Kumar, V.K. Rai, H. Hofsässa, U. Vetter, Incorporation of Zn2+ ions into BaTiO3:Er3+/Yb3+ nanophosphor: an effective way to enhance upconversion, defect luminescence and temperature sensing. PCCP 17(32), 20741–20753 (2015). https://doi.org/10.1039/c5cp01874a

    Article  ADS  Google Scholar 

  40. D.B. Paulaviciene, N. Traskina, R. Vargalis, A. Katelnikovas, S. Sakirzanovas, Thermal decomposition synthesis of Er3+-activated NaYbF4 upconverting microparticles for optical temperature sensing. J. Lumin. (2019). https://doi.org/10.1016/j.jlumin.2019.116672

    Article  Google Scholar 

  41. R. Bokolia, O.P. Thakur, V.K. Rai, S.K. Sharma, K. Sreenivas, Electrical properties and light up conversion effects in Bi3.79Er0.03Yb0.18Ti3-xWxO12 ferroelectric ceramics. Ceram. Int. 42(5), 5718–5730 (2016). https://doi.org/10.1016/j.ceramint.2015.12.103

    Article  Google Scholar 

  42. A. Banwal, R. Bokolia, Thermometric sensing performance in Erbium modified SrBi2-xNb2ErxO9 ferroelectric ceramic for optoelectronic devices. Ceram. Int. 48(23), 34405–34414 (2022). https://doi.org/10.1016/j.ceramint.2022.08.019

    Article  Google Scholar 

  43. Q. Zhang, K. Chen, L. Wang, H. Sun, X. Wang, X. Hao, A highly efficient, orange light-emitting (K0.5Na0.5)NbO3:Sm3+/Zr4+ lead-free piezoelectric material with superior water resistance behavior. J. Mater. Chem. C. Mater. 3(20), 5275–5284 (2015). https://doi.org/10.1039/c4tc02995j

    Article  Google Scholar 

  44. L. Wang, B. Lua, X. Liu, Y. Shi, J. Li, Y. Liu, Fabrication and upconversion luminescence of novel transparent Er2O3 ceramics. J. Eur. Ceram. Soc. (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.11.048

    Article  Google Scholar 

  45. Y.A. Genenko, J. Glaum, M.J. Hoffmann, K. Albe, Mechanisms of aging and fatigue in ferroelectrics. MSEB 192(C), 52–82 (2015). https://doi.org/10.1016/j.mseb.2014.10.003

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Department of Applied Physics, Delhi Technological University, for letting us use research facilities. The authors, MV and SS, would like to extend their sincere appreciation to their supervisor, Dr. RB, for her guidance, patience, and constant encouragement throughout their research work. They also wish to express their gratitude to AB for her valuable contributions to the experiment and manuscript writing, her kindness and friendship, and for creating a positive research environment. Finally, the authors would like to thank their family and friends for their unwavering support, understanding, inspiration, and love.

Author information

Authors and Affiliations

Authors

Contributions

Muskan Varshney: Conceptualization, data curation, writing-original draft, made all the measurements, Shreya Soni: Conceptualization, data curation, writing-original draft, made all the measurements, Ankita Banwal: Data curation, writing-editing, Megha Narwan: Data curation, writing-editing, Manoj Verma: XRD analysis, writing-editing, Renuka Bokolia: Supervision, reviewing and editing of the original draft.

Corresponding author

Correspondence to Renuka Bokolia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varshney, M., Soni, S., Banwal, A. et al. Effect of Er3+ ion incorporation on the structural, photoluminescence, and ferroelectric properties of K0.5Na0.5NbO3 ceramic for optoelectronic applications. Appl. Phys. A 130, 267 (2024). https://doi.org/10.1007/s00339-024-07447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07447-1

Keywords

Navigation