Skip to main content

Advertisement

Log in

Advancing strategies towards the development of tissue engineering scaffolds: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The field of tissue engineering involves various methodologies employed to improve or replace biological tissues with extracellular matrices (ECMs). Significant progress has been made, particularly in the fabrication of three-dimensional (3D) scaffolds for replacing damaged tissues or organs. The current review broadly focuses on the various research works carried out involving the use of biomaterials (biopolymers, bio-ceramics and dopants) in this area. A detailed discussion on several scaffold-making modern technologies has also been provided, along with a demonstration of different characterization techniques. Though a number of review papers have been published on biomaterials and fabrication techniques, a very small number focuses on the clinical trials carried out and the commercialization of scaffolds in the biomedical field. Thus, a critical analysis and detailed discussion of some of the clinical trials, market growth, and future demands have been presented in this paper.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Reproduced with permission [37]. Copyright 2021. MDPI

Figure 5

Reproduced with permission [67]. Copyright 2020, Elsevier

Figure 6

Reproduced with permission [127]. Copyright 2021, MDPI

Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Reproduced with permission [29]. Copyright 2021, Whioce

Figure 12

Reproduced with permission [218]. Copyright 2017, ACS Omega

Figure 13

Reproduced with permission [202]. Copyright 2019, Elsevier

Figure 14

Reproduced with permission [219]. Copyright 2021, Elsevier

Figure 15

Reproduced with permission [26]. Copyright 2021, Elsevier

Figure 16

Reproduced with permission [219]. Copyright 2021, Elsevier

Figure 17

Reproduced with permission [227]. Copyright 2021, MDPI

Figure 18

Reproduced with permission [231]. Copyright 2021, Elsevier

Figure 19

Reproduced with permission [25]. Copyright 2020, IOPScience

Figure 20

Reproduced with permission [233]. Copyright 2021, Elsevier

Figure 21

Reproduced with permission [234]. Copyright 2021, Elsevier

Figure 22

Reproduced with permission [239]. Copyright 2017, MDPI

Figure 23

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. Gupta S, Javaid S, Dey M et al (2022) Exploration of solvent casting for designing engineered microstructures for biomedical and functional applications. J Am Ceram Soc 105:1864–1881. https://doi.org/10.1111/JACE.18104

    Article  CAS  Google Scholar 

  2. Zheng Z, Eglin D, Alini M et al (2021) Visible light-induced 3D bioprinting technologies and corresponding bioink materials for tissue engineering: a review. Engineering 7:966–978. https://doi.org/10.1016/j.eng.2020.05.021

    Article  CAS  Google Scholar 

  3. Varadavenkatesan T, Vinayagam R, Pai S et al (2021) Synthesis, biological and environmental applications of hydroxyapatite and its composites with organic and inorganic coatings. Prog Org Coat 151:106056. https://doi.org/10.1016/j.porgcoat.2020.106056

    Article  CAS  Google Scholar 

  4. Christy PN, Basha SK, Kumari VS et al (2020) Biopolymeric nanocomposite scaffolds for bone tissue engineering applications—a review. J Drug Deliv Sci Technol. https://doi.org/10.1016/J.JDDST.2019.101452

    Article  Google Scholar 

  5. O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95. https://doi.org/10.1016/S1369-7021(11)70058-X

    Article  CAS  Google Scholar 

  6. Eltom A, Zhong G, Muhammad A (2019) Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv Mater Sci Eng. https://doi.org/10.1155/2019/3429527

    Article  Google Scholar 

  7. Biswal T (2021) Biopolymers for tissue engineering applications: a review. Mater Today Proc 41:397–402. https://doi.org/10.1016/J.MATPR.2020.09.628

    Article  CAS  Google Scholar 

  8. Roseti L, Parisi V, Petretta M et al (2017) Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C 78:1246–1262. https://doi.org/10.1016/J.MSEC.2017.05.017

    Article  CAS  Google Scholar 

  9. Qu H, Fu H, Han Z, Sun Y (2019) Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv 9:26252–26262. https://doi.org/10.1039/C9RA05214C

    Article  CAS  Google Scholar 

  10. Kantaros A, Chatzidai N, Karalekas D (2015) 3D printing-assisted design of scaffold structures. Int J Adv Manuf Technol 82:559–571. https://doi.org/10.1007/S00170-015-7386-6

    Article  Google Scholar 

  11. Bohner M, Van Lenthe GH, Grünenfelder S et al (2005) Synthesis and characterization of porous β-tricalcium phosphate blocks. Biomaterials 26:6099–6105. https://doi.org/10.1016/J.BIOMATERIALS.2005.03.026

    Article  CAS  Google Scholar 

  12. Bohner M, Baumgart F (2004) Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes. Biomaterials 25:3569–3582. https://doi.org/10.1016/J.BIOMATERIALS.2003.10.032

    Article  CAS  Google Scholar 

  13. Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466. https://doi.org/10.1016/J.BIOMATERIALS.2009.09.063

    Article  CAS  Google Scholar 

  14. Rouwkema J, Rivron NC, van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26:434–441. https://doi.org/10.1016/J.TIBTECH.2008.04.009

    Article  CAS  Google Scholar 

  15. Deb P, Deoghare AB, Borah A et al (2018) Scaffold development using biomaterials: a review. Mater Today Proc 5:12909–12919. https://doi.org/10.1016/J.MATPR.2018.02.276

    Article  CAS  Google Scholar 

  16. Mabrouk M, Beherei HH, Das DB (2020) Recent progress in the fabrication techniques of 3D scaffolds for tissue engineering. Mater Sci Eng C 110:110716. https://doi.org/10.1016/J.MSEC.2020.110716

    Article  CAS  Google Scholar 

  17. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. https://doi.org/10.1155/2011/290602

    Article  Google Scholar 

  18. Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31:4639–4656

    Article  CAS  Google Scholar 

  19. Kluge JA, Mauck RL (2011) Synthetic/biopolymer nanofibrous composites as dynamic tissue engineering scaffolds. In: Jayakumar R, Nair S (eds) Biomedical applications of polymeric nanofibers. Advances in polymer science, vol 246. Springer, Berlin

    Google Scholar 

  20. Patel DK, Dutta SD, Hexiu J et al (2020) Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrystals for bone tissue engineering. Int J Biol Macromol 162:1429–1441. https://doi.org/10.1016/j.ijbiomac.2020.07.246

    Article  CAS  Google Scholar 

  21. Singhvi MS, Zinjarde SS, Gokhale DV (2019) Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 127:1612–1626. https://doi.org/10.1111/jam.14290

    Article  CAS  Google Scholar 

  22. Elmowafy EM, Tiboni M, Soliman ME (2019) Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J Pharm Investig 49:347–380

    Article  CAS  Google Scholar 

  23. Hamad K, Kaseem M, Yang HW et al (2015) Properties and medical applications of polylactic acid: A review. Express Polym Lett 9:435–455. https://doi.org/10.3144/expresspolymlett.2015.42

    Article  CAS  Google Scholar 

  24. Li G, Zhao M, Xu F et al (2020) Synthesis and biological application of polylactic acid. Molecules 25(21):5023. https://doi.org/10.3390/molecules25215023

    Article  CAS  Google Scholar 

  25. Amnael Orozco-Díaz C, Moorehead R, Reilly GC et al (2020) Characterization of a composite polylactic acid-hydroxyapatite 3D-printing filament for bone-regeneration. Biomed Phys Eng Express. https://doi.org/10.1088/2057-1976/ab73f8

    Article  Google Scholar 

  26. Wang W, Zhang B, Li M et al (2021) 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Compos B Eng 224:109192. https://doi.org/10.1016/j.compositesb.2021.109192

    Article  CAS  Google Scholar 

  27. Backes EH, Pires LDN, Beatrice CAG et al (2020) Fabrication of biocompatible composites of poly(lactic acid)/hydroxyapatite envisioning medical applications. Polym Eng Sci 60:636–644. https://doi.org/10.1002/pen.25322

    Article  CAS  Google Scholar 

  28. Nazeer MA, Onder OC, Sevgili I et al (2020) 3D printed poly(lactic acid) scaffolds modified with chitosan and hydroxyapatite for bone repair applications. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2020.101515

    Article  Google Scholar 

  29. Custodio CL, Broñola PJM, Cayabyab SR, et al (2021) Powder loading effects on the physicochemical and mechanical properties of 3d printed poly lactic acid/hydroxyapatite biocomposites. Int J Bioprint 7:112–122. https://doi.org/10.18063/ijb.v7i1.326

  30. Bernardo MP, da Silva BCR, Mattoso LHC (2021) Development of three-dimensional printing filaments based on poly(lactic acid)/hydroxyapatite composites with potential for tissue engineering. J Compos Mater 55:2289–2300. https://doi.org/10.1177/0021998320988568

    Article  CAS  Google Scholar 

  31. Chuenjitkuntaworn B, Inrung W, Damrongsri D, Mekaapiruk K, Supaphol P, Pavasant P (2010) Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. J Biomed Mater Res A 94A(1):241–251. https://doi.org/10.1002/jbm.a.32657

    Article  CAS  Google Scholar 

  32. Wang L, Wang D, Zhou Y et al (2019) Fabrication of open-porous PCL/PLA tissue engineering scaffolds and the relationship of foaming process, morphology, and mechanical behavior. Polym Adv Technol 30:2539–2548. https://doi.org/10.1002/PAT.4701

    Article  CAS  Google Scholar 

  33. Jiao Z, Luo B, Xiang S et al (2019) 3D printing of HA/PCL composite tissue engineering scaffolds. Adv Ind Eng Polym Res 2:196–202. https://doi.org/10.1016/J.AIEPR.2019.09.003

    Article  Google Scholar 

  34. Luginina M, Schuhladen K, Orrú R et al (2020) Electrospun PCL/PGS composite fibers incorporating bioactive glass particles for soft tissue engineering applications. Nanomaterials 10:978. https://doi.org/10.3390/nano10050978

    Article  CAS  Google Scholar 

  35. Jiang C, Wang K, Liu Y et al (2021) Using wet electrospun PCL/Gelatin/CNT yarns to fabricate textile-based scaffolds for vascular tissue engineering. ACS Biomater Sci Eng 7:2627–2637. https://doi.org/10.1021/ACSBIOMATERIALS.1C00097/SUPPL_FILE/AB1C00097_SI_001.PDF

    Article  CAS  Google Scholar 

  36. Pedram Rad Z, Mokhtari J, Abbasi M (2018) Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering. Mater Sci Eng C 93:356–366. https://doi.org/10.1016/J.MSEC.2018.08.010

    Article  CAS  Google Scholar 

  37. Elkhouly H, Mamdouh W, El-Korashy DI (2021) Electrospun nano-fibrous bilayer scaffold prepared from polycaprolactone/gelatin and bioactive glass for bone tissue engineering. J Mater Sci Mater Med 32:1–15. https://doi.org/10.1007/S10856-021-06588-6/FIGURES/11

    Article  Google Scholar 

  38. Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. OPEN ACCESS Int J Mol Sci 15:15. https://doi.org/10.3390/ijms15033640

    Article  CAS  Google Scholar 

  39. Cui Y, Liu Y, Cui Y et al (2009) The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with l-lactic acid oligomer for bone repair. Acta Biomater 5:2680–2692. https://doi.org/10.1016/J.ACTBIO.2009.03.024

    Article  CAS  Google Scholar 

  40. Jiang L, Jiang L, Xiong C, Su S (2016) Improving the degradation behavior and in vitro biological property of nano-hydroxyapatite surface-grafted with the assist of citric acid. Colloids Surf B Biointerfaces 146:228–234. https://doi.org/10.1016/J.COLSURFB.2016.05.062

    Article  CAS  Google Scholar 

  41. Jagur-Grodzinski J (2006) Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polym Adv Technol 17:395–418. https://doi.org/10.1002/PAT.729

    Article  CAS  Google Scholar 

  42. Babilotte J, Martin B, Guduric V et al (2021) Development and characterization of a PLGA-HA composite material to fabricate 3D-printed scaffolds for bone tissue engineering. Mater Sci Eng C 118:111334. https://doi.org/10.1016/J.MSEC.2020.111334

    Article  CAS  Google Scholar 

  43. Park JW, Hwang JU, Back JH et al (2019) High strength PLGA/Hydroxyapatite composites with tunable surface structure using PLGA direct grafting method for orthopedic implants. Compos B Eng 178:107449. https://doi.org/10.1016/J.COMPOSITESB.2019.107449

    Article  CAS  Google Scholar 

  44. Rasoulianboroujeni M, Fahimipour F, Shah P et al (2019) Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications. Mater Sci Eng C 96:105–113. https://doi.org/10.1016/J.MSEC.2018.10.077

    Article  CAS  Google Scholar 

  45. Zheng S, Guan Y, Yu H et al (2019) Polyl-lysine-coated PLGA/poly(amino acid)-modified hydroxyapatite porous scaffolds as efficient tissue engineering scaffolds for cell adhesion, proliferation, and differentiation. New J Chem 43:9989–10002. https://doi.org/10.1039/C9NJ01675A

    Article  CAS  Google Scholar 

  46. Fathi-Achachelouei M, Keskin D, Bat E et al (2020) Dual growth factor delivery using PLGA nanoparticles in silk fibroin/PEGDMA hydrogels for articular cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 108:2041–2062. https://doi.org/10.1002/JBM.B.34544

    Article  CAS  Google Scholar 

  47. Mehrasa M, Asadollahi MA, Ghaedi K et al (2015) Electrospun aligned PLGA and PLGA/gelatin nanofibers embedded with silica nanoparticles for tissue engineering. Int J Biol Macromol 79:687–695. https://doi.org/10.1016/J.IJBIOMAC.2015.05.050

    Article  CAS  Google Scholar 

  48. Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone 46:386–395. https://doi.org/10.1016/J.BONE.2009.09.031

    Article  CAS  Google Scholar 

  49. Yeo T, Ko YG, Kim EJ et al (2021) Promoting bone regeneration by 3D-printed poly(glycolic acid)/hydroxyapatite composite scaffolds. J Ind Eng Chem 94:343–351. https://doi.org/10.1016/J.JIEC.2020.11.004

    Article  CAS  Google Scholar 

  50. Zhang J, Yang S, Yang X et al (2018) Novel fabricating process for porous polyglycolic acid scaffolds by melt-foaming using supercritical carbon dioxide. ACS Biomater Sci Eng 4:694–706. https://doi.org/10.1021/ACSBIOMATERIALS.7B00692

    Article  CAS  Google Scholar 

  51. Generali M, Kehl D, Capulli AK et al (2017) Comparative analysis of poly-glycolic acid-based hybrid polymer starter matrices for in vitro tissue engineering. Colloids Surf B Biointerfaces 158:203–212. https://doi.org/10.1016/J.COLSURFB.2017.06.046

    Article  CAS  Google Scholar 

  52. Ding J, Chen BO, Lv T et al (2016) Bone marrow mesenchymal stem cell-based engineered cartilage ameliorates polyglycolic acid/polylactic acid scaffold-induced inflammation through M2 polarization of macrophages in a pig model. Stem Cells Transl Med 5:1079–1089. https://doi.org/10.5966/SCTM.2015-0263

    Article  CAS  Google Scholar 

  53. Filippi M, Born G, Chaaban M, Scherberich A (2020) Natural polymeric scaffolds in bone regeneration. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00474

    Article  Google Scholar 

  54. Singh MR, Patel S, Singh D (2016) Natural polymer-based hydrogels as scaffolds for tissue engineering. In: Grumezescu AM (ed) Nanobiomaterials in soft tissue engineering: applications of nanobiomaterials. Elsevier, Amsterdam

    Google Scholar 

  55. Heidary Rouchi A, Mahdavi-Mazdeh M (2015) Regenerative medicine in organ and tissue transplantation: shortly and practically achievable? Int J Organ Transplant Med 6:93

    CAS  Google Scholar 

  56. Montalbano G, Molino G, Fiorilli S, Vitale-Brovarone C (2020) Synthesis and incorporation of rod-like nano-hydroxyapatite into type I collagen matrix: a hybrid formulation for 3D printing of bone scaffolds. J Eur Ceram Soc 40:3689–3697. https://doi.org/10.1016/J.JEURCERAMSOC.2020.02.018

    Article  CAS  Google Scholar 

  57. Garcia CF, Marangon CA, Massimino LC et al (2021) Development of collagen/nanohydroxyapatite scaffolds containing plant extract intended for bone regeneration. Mater Sci Eng C 123:111955. https://doi.org/10.1016/J.MSEC.2021.111955

    Article  CAS  Google Scholar 

  58. Sobhanian P, Khorram M, Hashemi SS, Mohammadi A (2019) Development of nanofibrous collagen-grafted poly (vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute. Int J Biol Macromol 130:977–987. https://doi.org/10.1016/J.IJBIOMAC.2019.03.045

    Article  CAS  Google Scholar 

  59. Gunes OC, Kara A, Baysan G et al (2022) Fabrication of 3D Printed poly(lactic acid) strut and wet-electrospun cellulose nano fiber reinforced chitosan-collagen hydrogel composite scaffolds for meniscus tissue engineering. J Biomater Appl 37:683–697. https://doi.org/10.1177/08853282221109339

    Article  CAS  Google Scholar 

  60. Ahmadian S, Ghorbani M, Mahmoodzadeh F (2020) Silver sulfadiazine-loaded electrospun ethyl cellulose/polylactic acid/collagen nanofibrous mats with antibacterial properties for wound healing. Int J Biol Macromol 162:1555–1565. https://doi.org/10.1016/j.ijbiomac.2020.08.059

    Article  CAS  Google Scholar 

  61. Shen Y, Xu Y, Yi B et al (2021) Engineering a highly biomimetic chitosan-based cartilage scaffold by using short fibers and a cartilage-decellularized matrix. Biomacromol 22:2284–2297. https://doi.org/10.1021/ACS.BIOMAC.1C00366/SUPPL_FILE/BM1C00366_SI_001.PDF

    Article  CAS  Google Scholar 

  62. Saeedi Garakani S, Khanmohammadi M, Atoufi Z et al (2020) Fabrication of chitosan/agarose scaffolds containing extracellular matrix for tissue engineering applications. Int J Biol Macromol 143:533–545. https://doi.org/10.1016/J.IJBIOMAC.2019.12.040

    Article  CAS  Google Scholar 

  63. Sharifi F, Atyabi SM, Norouzian D et al (2018) Polycaprolactone/carboxymethyl chitosan nanofibrous scaffolds for bone tissue engineering application. Int J Biol Macromol 115:243–248. https://doi.org/10.1016/J.IJBIOMAC.2018.04.045

    Article  CAS  Google Scholar 

  64. Iacob AT, Drăgan M, Ionescu OM, Profire L, Ficai A, Andronescu E, Confederat LG, Lupascu D (2020) An overview of biopolymeric electrospun nanofibers based on polysaccharides for wound healing management. Pharmaceutics 12:983

    Article  CAS  Google Scholar 

  65. Maharjan B, Park J, Kaliannagounder VK, Awasthi GP, Joshi MK, Park CH, Kim CS (2021) Regenerated cellulose nanofiber reinforced chitosan hydrogel scaffolds for bone tissue engineering. Carbohydr Polym 251:117023

    Article  CAS  Google Scholar 

  66. Xuan H, Wu S, Fei S, Li B, Yang Y, Yuan H (2021) Injectable nanofiber-polysaccharide self-healing hydrogels for wound healing. Mater Sci Eng C 128:112264

    Article  CAS  Google Scholar 

  67. Sadeghianmaryan A, Naghieh S, Alizadeh Sardroud H et al (2020) Extrusion-based printing of chitosan scaffolds and their in vitro characterization for cartilage tissue engineering. Int J Biol Macromol 164:3179–3192. https://doi.org/10.1016/J.IJBIOMAC.2020.08.180

    Article  CAS  Google Scholar 

  68. Dutta SD, Hexiu J, Patel DK et al (2021) 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering. Int J Biol Macromol 167:644–658. https://doi.org/10.1016/J.IJBIOMAC.2020.12.011

    Article  CAS  Google Scholar 

  69. Luo Y, Li Y, Qin X, Wa Q (2018) 3D printing of concentrated alginate/gelatin scaffolds with homogeneous nano apatite coating for bone tissue engineering. Mater Des 146:12–19. https://doi.org/10.1016/J.MATDES.2018.03.002

    Article  CAS  Google Scholar 

  70. Zhang J, Wehrle E, Vetsch JR et al (2019) Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology. Biomed Mater 14:065009. https://doi.org/10.1088/1748-605X/AB3C74

    Article  CAS  Google Scholar 

  71. Hakimi F, Jafari H, Hashemikia S, Shabani S, Ramazani A (2023) Chitosan-polyethylene oxide/clay-alginate nanofiber hydrogel scaffold for bone tissue engineering: preparation, physical characterization, and biomimetic mineralization. Int J Biol Macromol 233:123453

    Article  CAS  Google Scholar 

  72. Zulkiflee I, Fauzi MB (2021) Gelatin-polyvinyl alcohol film for tissue engineering: a concise review. Biomedicines 9:979. https://doi.org/10.3390/BIOMEDICINES9080979

    Article  CAS  Google Scholar 

  73. Gautam S, Sharma C, Purohit SD et al (2021) Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering. Mater Sci Eng C 119:111588. https://doi.org/10.1016/J.MSEC.2020.111588

    Article  CAS  Google Scholar 

  74. Heidari M, Bahrami SH, Ranjbar-Mohammadi M, Milan PB (2019) Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Mater Sci Eng C 103:109768. https://doi.org/10.1016/J.MSEC.2019.109768

    Article  CAS  Google Scholar 

  75. Ashwin B, Abinaya B, Prasith TP et al (2020) 3D-poly (lactic acid) scaffolds coated with gelatin and mucic acid for bone tissue engineering. Int J Biol Macromol 162:523–532. https://doi.org/10.1016/J.IJBIOMAC.2020.06.157

    Article  CAS  Google Scholar 

  76. Ma P, Wu W, Wei Y et al (2021) Biomimetic gelatin/chitosan/polyvinyl alcohol/nano-hydroxyapatite scaffolds for bone tissue engineering. Mater Des 207:109865. https://doi.org/10.1016/J.MATDES.2021.109865

    Article  CAS  Google Scholar 

  77. Moazzami Goudarzi Z, Behzad T, Ghasemi-Mobarakeh L, Kharaziha M (2021) An investigation into influence of acetylated cellulose nanofibers on properties of PCL/Gelatin electrospun nanofibrous scaffold for soft tissue engineering. Polymer (Guildf) 213:123313. https://doi.org/10.1016/j.polymer.2020.123313

    Article  CAS  Google Scholar 

  78. Samadian H, Farzamfar S, Vaez A et al (2020) A tailored polylactic acid/polycaprolactone biodegradable and bioactive 3D porous scaffold containing gelatin nanofibers and Taurine for bone regeneration. Sci Rep 10:13366. https://doi.org/10.1038/s41598-020-70155-2

    Article  CAS  Google Scholar 

  79. Mohamad Yunos D, Bretcanu O, Boccaccini AR (2008) Polymer-bioceramic composites for tissue engineering scaffolds. J Mater Sci 43:4433–4442

    Article  CAS  Google Scholar 

  80. Kolos E, Ruys AJ (2015) Biomimetic coating on porous alumina for tissue engineering: characterisation by cell culture and confocal microscopy. Materials 8:3584–3606. https://doi.org/10.3390/MA8063584

    Article  CAS  Google Scholar 

  81. Rahmati M, Mozafari M (2019) Biocompatibility of alumina-based biomaterials—a review. J Cell Physiol 234:3321–3335. https://doi.org/10.1002/JCP.27292

    Article  CAS  Google Scholar 

  82. Toloue E, Karbasi S, Salehi H, Rafienia M (2019) Evaluation of mechanical properties and cell viability of poly (3-hydroxybutyrate)-chitosan/Al2O3 nanocomposite scaffold for cartilage tissue engineering. J Med Signals Sens 9:111. https://doi.org/10.4103/JMSS.JMSS_56_18

    Article  Google Scholar 

  83. Zafar B, Mottaghitalab F, Shahosseini Z et al (2020) Silk fibroin/alumina nanoparticle scaffold using for osteogenic differentiation of rabbit adipose-derived stem cells. Materialia (Oxf) 9:100518. https://doi.org/10.1016/J.MTLA.2019.100518

    Article  CAS  Google Scholar 

  84. Barkallah R, Taktak R, Yan Z et al (2021) Fracture behavior of alumina-tricalcium phosphate-titania composites for bone tissue reconstruction. Eng Fract Mech 255:107959. https://doi.org/10.1016/J.ENGFRACMECH.2021.107959

    Article  Google Scholar 

  85. Arce AE, Rosero-Alzate ÉL, Zapata-Pernett MÁ et al (2021) Influence of porosity on the biomimetic growing patterns of bonelike apatite on the surface of calcium phosphate—calcium titanate—alumina compounds. Dyna (Medellin) 88:24–33. https://doi.org/10.15446/dyna.v88n218.91651

    Article  CAS  Google Scholar 

  86. Esteves AVM, Martins MI, Soares P et al (2022) Additive manufacturing of ceramic alumina/calcium phosphate structures by DLP 3D printing. Mater Chem Phys 276:125417. https://doi.org/10.1016/J.MATCHEMPHYS.2021.125417

    Article  CAS  Google Scholar 

  87. Monrreal-Rodríguez AK, Garibay-Alvarado JA, Vargas-Requena CL, Reyes-López SY (2020) In vitro evaluation of poly-ε-caprolactone-hydroxypatite-alumina electrospun fibers on the fibroblast’s proliferation. Res Mater 6:100091. https://doi.org/10.1016/J.RINMA.2020.100091

    Article  Google Scholar 

  88. Kavitha K, Sutha S, Prabhu M et al (2013) In situ synthesized novel biocompatible titania–chitosan nanocomposites with high surface area and antibacterial activity. Carbohydr Polym 93:731–739. https://doi.org/10.1016/J.CARBPOL.2012.12.031

    Article  CAS  Google Scholar 

  89. Popat KC, Leoni L, Grimes CA, Desai TA (2007) Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28:3188–3197. https://doi.org/10.1016/J.BIOMATERIALS.2007.03.020

    Article  CAS  Google Scholar 

  90. Parvizifard M, Karbasi S, Salehi H, Soleymani Eil Bakhtiari S (2019) Evaluation of physical, mechanical and biological properties of bioglass/titania scaffold coated with poly (3-hydroxybutyrate)-chitosan for bone tissue engineering applications. Mater Technol 35:75–91. https://doi.org/10.1080/10667857.2019.1658169

    Article  CAS  Google Scholar 

  91. Chuang YC, Wang L, Feng KC et al (2021) The role of titania surface coating by atomic layer deposition in improving osteogenic differentiation and hard tissue formation of dental pulp stem cells. Adv Eng Mater 23:2100097. https://doi.org/10.1002/ADEM.202100097

    Article  CAS  Google Scholar 

  92. Agilan P, Saranya K, Rajendran N (2021) Bio-inspired polydopamine incorporated titania nanotube arrays for biomedical applications. Colloids Surf A Physicochem Eng Asp 629:127489. https://doi.org/10.1016/J.COLSURFA.2021.127489

    Article  CAS  Google Scholar 

  93. Fatima T, Jolly R, Wani MR et al (2021) Exploring the bone regeneration potential of bio-fabricated nano-titania reinforced polyvinyl alcohol/nano-cellulose based composite film. Res Mater 12:100240. https://doi.org/10.1016/J.RINMA.2021.100240

    Article  CAS  Google Scholar 

  94. Zhao Q, Zhang Y, Xiao L et al (2021) Surface engineering of titania nanotubes incorporated with double-layered extracellular vesicles to modulate inflammation and osteogenesis. Regen Biomater. https://doi.org/10.1093/RB/RBAB010

    Article  Google Scholar 

  95. Olam M, Tosun N (2022) 3D-printed polylactide/hydroxyapatite/titania composite filaments. Mater Chem Phys 276:125267. https://doi.org/10.1016/J.MATCHEMPHYS.2021.125267

    Article  CAS  Google Scholar 

  96. Ortiz GMH, Parra R, Fuchs V, Fanovich MA (2022) TiO2-HA composites obtained by combination of sol–gel synthesis and a supercritical CO2 drying process. J Sol-Gel Sci Technol 101:205–214. https://doi.org/10.1007/S10971-021-05659-Y

    Article  CAS  Google Scholar 

  97. Manicone PF, Rossi Iommetti P, Raffaelli L (2007) An overview of zirconia ceramics: basic properties and clinical applications. J Dent 35:819–826. https://doi.org/10.1016/J.JDENT.2007.07.008

    Article  CAS  Google Scholar 

  98. Hadjicharalambous C, Buyakov A, Buyakova S et al (2015) Porous alumina, zirconia and alumina/zirconia for bone repair: fabrication, mechanical and in vitro biological response. Biomed Mater 10:025012–025999. https://doi.org/10.1088/1748-6041/10/2/025012

    Article  CAS  Google Scholar 

  99. Weng W, Wu W, Hou M et al (2021) Review of zirconia-based biomimetic scaffolds for bone tissue engineering. J Mater Sci 56:8309–8333. https://doi.org/10.1007/S10853-021-05824-2

    Article  CAS  Google Scholar 

  100. Jasemi A, Kamyab Moghadas B, Khandan A, Saber-Samandari S (2022) A porous calcium-zirconia scaffolds composed of magnetic nanoparticles for bone cancer treatment: fabrication, characterization and FEM analysis. Ceram Int 48:1314–1325. https://doi.org/10.1016/J.CERAMINT.2021.09.216

    Article  CAS  Google Scholar 

  101. Jafari A, Mirzaei H, Shafiei MA et al (2022) Conductive poly(ε-caprolactone)/polylactic acid scaffolds for tissue engineering applications: synergy effect of zirconium nanoparticles and polypyrrole. Polym Adv Technol. https://doi.org/10.1002/PAT.5611

    Article  Google Scholar 

  102. Shadianlou F, Foorginejad A, Yaghoubinezhad Y (2022) Fabrication of zirconia/reduced graphene oxide/hydroxyapatite scaffold by rapid prototyping method and its mechanical and biocompatibility properties. Ceram Int 48:7031–7044. https://doi.org/10.1016/J.CERAMINT.2021.11.261

    Article  CAS  Google Scholar 

  103. Shadianlou F, Foorginejad A, Yaghoubinezhad Y (2022) Hydrothermal synthesis of zirconia-based nanocomposite powder reinforced by graphene and its application for bone scaffold with 3D printing. Adv Powder Technol 33:103406. https://doi.org/10.1016/J.APT.2021.103406

    Article  CAS  Google Scholar 

  104. Rahaman MN, Day DE, Sonny Bal B et al (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373. https://doi.org/10.1016/J.ACTBIO.2011.03.016

    Article  CAS  Google Scholar 

  105. Gerhardt LC, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3:3867–3910. https://doi.org/10.3390/MA3073867

    Article  CAS  Google Scholar 

  106. Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C 31:1245–1256. https://doi.org/10.1016/J.MSEC.2011.04.022

    Article  CAS  Google Scholar 

  107. Ningsih HS, Liu YC, Chen JW, Chou YJ (2022) Effects of strontium dopants on the in vitro bioactivity and cytotoxicity of strontium-doped spray-dried bioactive glass microspheres. J Non Cryst Solids 576:121284. https://doi.org/10.1016/J.JNONCRYSOL.2021.121284

    Article  CAS  Google Scholar 

  108. Guo R, Hou X, Zhao D et al (2022) Mechanical stability and biological activity of Mg–Sr co-doped bioactive glass/chitosan composite scaffolds. J Non Cryst Solids 583:121481. https://doi.org/10.1016/J.JNONCRYSOL.2022.121481

    Article  CAS  Google Scholar 

  109. Zhang Y, Hu M, Zhang W, Zhang X (2022) Homology of selenium (Se) and tellurium (Te) endow the functional similarity of Se-doped and Te-doped mesoporous bioactive glass nanoparticles in bone tissue engineering. Ceram Int 48:3729–3739. https://doi.org/10.1016/J.CERAMINT.2021.10.155

    Article  CAS  Google Scholar 

  110. Kargozar S, Milan PB, Amoupour M et al (2022) Osteogenic potential of magnesium (Mg)-doped multicomponent bioactive glass: in vitro and in vivo animal studies. Materials 15:318. https://doi.org/10.3390/ma15010318

    Article  CAS  Google Scholar 

  111. Ensoylu M, Deliormanlı AM, Atmaca H (2021) Tungsten disulfide nanoparticle-containing PCL and PLGA-coated bioactive glass composite scaffolds for bone tissue engineering applications. J Mater Sci 56(33):18650–18667. https://doi.org/10.1007/S10853-021-06494-W

    Article  CAS  Google Scholar 

  112. Ranjbar FE, Foroutan F, Hajian M et al (2021) Preparation and characterization of 58S bioactive glass based scaffold with Kaempferol-containing Zein coating for bone tissue engineering. J Biomed Mater Res B Appl Biomater 109:1259–1270. https://doi.org/10.1002/JBM.B.34786

    Article  CAS  Google Scholar 

  113. Du X, Wei D, Huang L et al (2019) 3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering. Mater Sci Eng C 103:109731. https://doi.org/10.1016/J.MSEC.2019.05.016

    Article  CAS  Google Scholar 

  114. Taghvaei AH, Danaeifar F, Gammer C et al (2020) Synthesis and characterization of novel mesoporous strontium-modified bioactive glass nanospheres for bone tissue engineering applications. Microporous Mesoporous Mater 294:109889. https://doi.org/10.1016/J.MICROMESO.2019.109889

    Article  CAS  Google Scholar 

  115. Sharifianjazi F, Esmaeilkhanian A, Moradi M et al (2021) Biocompatibility and mechanical properties of pigeon bone waste extracted natural nano-hydroxyapatite for bone tissue engineering. Mater Sci Eng B Solid State Mater Adv Technol 264:114950. https://doi.org/10.1016/j.mseb.2020.114950

    Article  CAS  Google Scholar 

  116. Wu C, Wang S, Wu D, Shih W (2021) Novel composite 3D-printed filament made from fish scale-derived hydroxyapatite, eggshell and polylactic acid via a fused fabrication approach. Addit Manuf 46:102169

    CAS  Google Scholar 

  117. Pandele AM, Constantinescu A, Radu IC et al (2020) Synthesis and characterization of PLA-micro-structured hydroxyapatite composite films. Materials 13:1–13. https://doi.org/10.3390/ma13020274

    Article  CAS  Google Scholar 

  118. Han KS, Sathiyaseelan A, Saravanakumar K, Wang MH (2022) Wound healing efficacy of biocompatible hydroxyapatite from bovine bone waste for bone tissue engineering application. J Environ Chem Eng 10:106888. https://doi.org/10.1016/J.JECE.2021.106888

    Article  CAS  Google Scholar 

  119. Shuai C, Peng B, Feng P et al (2021) In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold. J Adv Res. https://doi.org/10.1016/j.jare.2021.03.009

    Article  Google Scholar 

  120. Cestari F, Petretta M, Yang Y et al (2021) 3D printing of PCL/nano-hydroxyapatite scaffolds derived from biogenic sources for bone tissue engineering. Sustain Mater Technol 29:e00318. https://doi.org/10.1016/J.SUSMAT.2021.E00318

    Article  CAS  Google Scholar 

  121. Zhao H, Liao J, Wu F, Shi J (2021) Mechanical strength improvement of chitosan/hydroxyapatite scaffolds by coating and cross-linking. J Mech Behav Biomed Mater 114:104169. https://doi.org/10.1016/J.JMBBM.2020.104169

    Article  CAS  Google Scholar 

  122. Carfì Pavia F, Conoscenti G, Greco S et al (2018) Preparation, characterization and in vitro test of composites poly-lactic acid/hydroxyapatite scaffolds for bone tissue engineering. Int J Biol Macromol 119:945–953. https://doi.org/10.1016/J.IJBIOMAC.2018.08.007

    Article  Google Scholar 

  123. Daugela P, Pranskunas M, Juodzbalys G et al (2018) Novel cellulose/hydroxyapatite scaffolds for bone tissue regeneration: in vitro and in vivo study. J Tissue Eng Regen Med 12:1195–1208. https://doi.org/10.1002/TERM.2651

    Article  CAS  Google Scholar 

  124. Kang JH, Sakthiabirami K, Jang KJ et al (2022) Mechanical and biological evaluation of lattice structured hydroxyapatite scaffolds produced via stereolithography additive manufacturing. Mater Des 214:110372. https://doi.org/10.1016/J.MATDES.2021.110372

    Article  CAS  Google Scholar 

  125. Khodabandeh Z, Tanideh N, Aslani FS et al (2022) A comparative in vitro and in vivo study on bone tissue engineering potential of the collagen/nano-hydroxyapatite scaffolds loaded with ginger extract and curcumin. Mater Today Commun 31:103339. https://doi.org/10.1016/J.MTCOMM.2022.103339

    Article  CAS  Google Scholar 

  126. Kim C, Lee JW, Heo JH et al (2022) Natural bone-mimicking nanopore-incorporated hydroxyapatite scaffolds for enhanced bone tissue regeneration. Biomater Res 26(1):1–13. https://doi.org/10.1186/S40824-022-00253-X

    Article  CAS  Google Scholar 

  127. García A, Cabañas MV, Peña J, Sánchez-Salcedo S (2021) Design of 3D scaffolds for hard tissue engineering: from apatites to silicon mesoporous materials. Pharmaceutics 13:1981. https://doi.org/10.3390/PHARMACEUTICS13111981

    Article  Google Scholar 

  128. Hunt JA, Chen R, Van Veen T, Bryan N (2014) Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B 2:5319–5338. https://doi.org/10.1039/c4tb00775a

    Article  CAS  Google Scholar 

  129. Wang S, Lee JM, Yeong WY (2015) Smart hydrogels for 3D bioprinting. Int J Bioprint 1:3–14. https://doi.org/10.18063/IJB.2015.01.005

    Article  Google Scholar 

  130. Samui AB (2022) Smart polymers. CRC Press, Boca Raton

    Book  Google Scholar 

  131. Saul JM, Williams DF (2011) Hydrogels in regenerative medicine. In: Modjarrad K, Ebnesajjad S (eds) Handbook of polymer applications in medicine and medical devices. Elsevier, Amsterdam, pp 279–302. https://doi.org/10.1016/B978-0-323-22805-3.00012-8

    Chapter  Google Scholar 

  132. Mantha S, Pillai S, Khayambashi P et al (2019) Smart hydrogels in tissue engineering and regenerative medicine. Materials. https://doi.org/10.3390/ma12203323

    Article  Google Scholar 

  133. Li J, Cui X, Hooper GJ et al (2020) Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: a review. J Mech Behav Biomed Mater. https://doi.org/10.1016/j.jmbbm.2020.103671

    Article  Google Scholar 

  134. Chen SY, Kuo CN, Su YL et al (2018) Microstructure and fracture properties of open-cell porous Ti–6Al–4V with high porosity fabricated by electron beam melting. Mater Charact 138:255–262. https://doi.org/10.1016/j.matchar.2018.02.016

    Article  CAS  Google Scholar 

  135. Waksman R, Lipinski MJ, Acampado E et al (2017) Comparison of acute thrombogenicity for metallic and polymeric bioabsorbable scaffolds: magmaris versus absorb in a porcine arteriovenous shunt model. Circ Cardiovasc Interv. https://doi.org/10.1161/CIRCINTERVENTIONS.116.004762

    Article  Google Scholar 

  136. Tan L, Gong M, Zheng F et al (2009) Study on compression behavior of porous magnesium used as bone tissue engineering scaffolds. Biomed Mater. https://doi.org/10.1088/1748-6041/4/1/015016

    Article  Google Scholar 

  137. Khalajabadi SZ, Ahmad N, Izman S et al (2017) In vitro biodegradation, electrochemical corrosion evaluations and mechanical properties of an Mg/HA/TiO2 nanocomposite for biomedical applications. J Alloys Compd 696:768–781. https://doi.org/10.1016/j.jallcom.2016.11.106

    Article  CAS  Google Scholar 

  138. Molchanova E (1965) Phase diagrams of titanium alloys. Israel Program for Scientific Translations. Jerusalem 90:93

    Google Scholar 

  139. Alvarez K, Nakajima H (2009) Metallic scaffolds for bone regeneration. Materials 2:790–832. https://doi.org/10.3390/ma2030790

    Article  CAS  Google Scholar 

  140. Naumenko E, Fakhrullin R (2019) Halloysite nanoclay/biopolymers composite materials in tissue engineering. Biotechnol J 14:1900055

    Article  CAS  Google Scholar 

  141. Khan MUA, Razak SIA, Arjan WS et al (2021) Recent advances in biopolymeric composite materials for tissue engineering and regenerative medicines: a review. Molecules 26:619

    Article  CAS  Google Scholar 

  142. Lei Y, Xu Z, Ke Q et al (2017) Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Mater Sci Eng C 72:134–142. https://doi.org/10.1016/J.MSEC.2016.11.063

    Article  CAS  Google Scholar 

  143. Kargozar S, Montazerian M, Fiume E, Baino F (2019) Multiple and promising applications of strontium (Sr)-containing bioactive glasses in bone tissue engineering. Front Bioeng Biotechnol 7:161. https://doi.org/10.3389/FBIOE.2019.00161/XML/NLM

    Article  Google Scholar 

  144. Zreiqat H, Ramaswamy Y, Wu C et al (2010) The incorporation of strontium and zinc into a calcium–silicon ceramic for bone tissue engineering. Biomaterials 31:3175–3184. https://doi.org/10.1016/J.BIOMATERIALS.2010.01.024

    Article  CAS  Google Scholar 

  145. Pierantozzi D, Scalzone A, Jindal S et al (2020) 3D printed Sr-containing composite scaffolds: effect of structural design and material formulation towards new strategies for bone tissue engineering. Compos Sci Technol 191:108069. https://doi.org/10.1016/J.COMPSCITECH.2020.108069

    Article  CAS  Google Scholar 

  146. Ding X, Li X, Li C et al (2019) Chitosan/dextran hydrogel constructs containing strontium-doped hydroxyapatite with enhanced osteogenic potential in rat cranium. ACS Biomater Sci Eng 5:4574–4586. https://doi.org/10.1021/ACSBIOMATERIALS.9B00584/ASSET/IMAGES/ACSBIOMATERIALS.9B00584.SOCIAL.JPEG_V03

    Article  CAS  Google Scholar 

  147. Ge M, Ge K, Gao F et al (2018) Biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) scaffolds for bone defect repair. Int J Nanomed 13:1707. https://doi.org/10.2147/IJN.S154605

    Article  CAS  Google Scholar 

  148. Yin H, Yang C, Gao Y et al (2018) Fabrication and characterization of strontium-doped borate-based bioactive glass scaffolds for bone tissue engineering. J Alloys Compd 743:564–569. https://doi.org/10.1016/J.JALLCOM.2018.01.099

    Article  CAS  Google Scholar 

  149. Mosaddada SA, Yazdaniana M, Tebyanian H et al (2020) Fabrication and properties of developed collagen/strontium-doped bioglass scaffolds for bone tissue engineering. J Mater Res 9:14799–14817. https://doi.org/10.1016/J.JMRT.2020.10.065

    Article  Google Scholar 

  150. Wang L, Pathak JL, Liang D et al (2020) Fabrication and characterization of strontium-hydroxyapatite/silk fibroin biocomposite nanospheres for bone-tissue engineering applications. Int J Biol Macromol 142:366–375. https://doi.org/10.1016/J.IJBIOMAC.2019.09.107

    Article  CAS  Google Scholar 

  151. Stanić V, Janaćković D, Dimitrijević S et al (2011) Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Appl Surf Sci 257:4510–4518. https://doi.org/10.1016/J.APSUSC.2010.12.113

    Article  Google Scholar 

  152. Marsich E, Bellomo F, Turco G et al (2013) Nano-composite scaffolds for bone tissue engineering containing silver nanoparticles: preparation, characterization and biological properties. J Mater Sci Mater Med 24(7):1799–1807. https://doi.org/10.1007/S10856-013-4923-4

    Article  CAS  Google Scholar 

  153. Saravanan S, Nethala S, Pattnaik S et al (2011) Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol 49:188–193. https://doi.org/10.1016/J.IJBIOMAC.2011.04.010

    Article  CAS  Google Scholar 

  154. Khan MUA, Abd Razak SI, Mehboob H et al (2021) Synthesis and characterization of silver-coated polymeric scaffolds for bone tissue engineering: antibacterial and in vitro evaluation of cytotoxicity and biocompatibility. ACS Omega 6:4335–4346. https://doi.org/10.1021/ACSOMEGA.0C05596/ASSET/IMAGES/LARGE/AO0C05596_0010.JPEG

    Article  CAS  Google Scholar 

  155. Riaz M, Zia R, Ijaz A et al (2018) Synthesis of monophasic Ag doped hydroxyapatite and evaluation of antibacterial activity. Mater Sci Eng C 90:308–313. https://doi.org/10.1016/J.MSEC.2018.04.076

    Article  CAS  Google Scholar 

  156. Binkley DM, Lee BEJ, Saem S et al (2019) Fabrication of polycaprolactone electrospun nanofibers doped with silver nanoparticles formed by air plasma treatment. Nanotechnology 30:215101. https://doi.org/10.1088/1361-6528/AB0444

    Article  CAS  Google Scholar 

  157. Naseri S, Lepry WC, Maisuria VB et al (2019) Development and characterization of silver-doped sol–gel-derived borate glasses with anti-bacterial activity. J Non Cryst Solids 505:438–446. https://doi.org/10.1016/J.JNONCRYSOL.2018.11.026

    Article  CAS  Google Scholar 

  158. El-Rashidy AA, Waly G, Gad A et al (2018) Antibacterial activity and biocompatibility of zein scaffolds containing silver-doped bioactive glass. Biomed Mater 13:065006. https://doi.org/10.1088/1748-605X/AAD8CF

    Article  Google Scholar 

  159. Kumar Saini R, Prasad Bagri L, Bajpai AK (2019) Nano-silver hydroxyapatite based antibacterial 3D scaffolds of gelatin/alginate/poly (vinyl alcohol) for bone tissue engineering applications. Colloids Surf B Biointerfaces 177:211–218. https://doi.org/10.1016/J.COLSURFB.2019.01.064

    Article  CAS  Google Scholar 

  160. Pajares-Chamorro N, Wagley Y, Maduka CV et al (2021) Silver-doped bioactive glass particles for in vivo bone tissue regeneration and enhanced methicillin-resistant Staphylococcus aureus (MRSA) inhibition. Mater Sci Eng C 120:111693. https://doi.org/10.1016/J.MSEC.2020.111693

    Article  CAS  Google Scholar 

  161. Venkatesan K, Mary Mathew A, Sreya PV et al (2021) Silver–calcium titanate–titania decorated Ti6Al4V powders: an antimicrobial and biocompatible filler in composite scaffold for bone tissue engineering application. Adv Powder Technol 32:4576–4586. https://doi.org/10.1016/J.APT.2021.10.008

    Article  CAS  Google Scholar 

  162. Iqbal N, Iqbal S, Iqbal T et al (2020) Zinc-doped hydroxyapatite—zeolite/polycaprolactone composites coating on magnesium substrate for enhancing in-vitro corrosion and antibacterial performance. Trans Nonferrous Met Soc China 30:123–133. https://doi.org/10.1016/S1003-6326(19)65185-X

    Article  CAS  Google Scholar 

  163. Maleki-Ghaleh H, Hossein Siadati M, Fallah A et al (2021) Effect of zinc-doped hydroxyapatite/graphene nanocomposite on the physicochemical properties and osteogenesis differentiation of 3D-printed polycaprolactone scaffolds for bone tissue engineering. Chem Eng J 426:131321. https://doi.org/10.1016/J.CEJ.2021.131321

    Article  CAS  Google Scholar 

  164. Maleki-Ghaleh H, Siadati MH, Fallah A et al (2021) Antibacterial and cellular behaviors of novel zinc-doped hydroxyapatite/graphene nanocomposite for bone tissue engineering. Int J Mol Sci 22:9564. https://doi.org/10.3390/IJMS22179564

    Article  CAS  Google Scholar 

  165. Ullah I, Siddiqui MA, Kolawole SK et al (2020) Synthesis, characterization and in vitro evaluation of zinc and strontium binary doped hydroxyapatite for biomedical application. Ceram Int 46:14448–14459. https://doi.org/10.1016/J.CERAMINT.2020.02.242

    Article  CAS  Google Scholar 

  166. Dittler ML, Unalan I, Grünewald A et al (2019) Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. Colloids Surf B Biointerfaces 182:110346. https://doi.org/10.1016/J.COLSURFB.2019.110346

    Article  CAS  Google Scholar 

  167. Zamani D, Moztarzadeh F, Bizari D (2019) Alginate-bioactive glass containing Zn and Mg composite scaffolds for bone tissue engineering. Int J Biol Macromol 137:1256–1267. https://doi.org/10.1016/J.IJBIOMAC.2019.06.182

    Article  CAS  Google Scholar 

  168. Dharmalingam K, Padmavathi G, Kunnumakkara AB, Anandalakshmi R (2019) Microwave-assisted synthesis of cellulose/zinc-sulfate-calcium-phosphate (ZSCAP) nanocomposites for biomedical applications. Mater Sci Eng C 100:535–543. https://doi.org/10.1016/J.MSEC.2019.02.109

    Article  CAS  Google Scholar 

  169. Shahrouzifar MR, Salahinejad E (2019) Strontium doping into diopside tissue engineering scaffolds. Ceram Int 45:10176–10181. https://doi.org/10.1016/J.CERAMINT.2019.02.067

    Article  CAS  Google Scholar 

  170. Fielding GA, Bandyopadhyay A, Bose S (2012) Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater 28:113–122. https://doi.org/10.1016/J.DENTAL.2011.09.010

    Article  CAS  Google Scholar 

  171. Atkinson I, Anghel EM, Petrescu S et al (2019) Cerium-containing mesoporous bioactive glasses: material characterization, in vitro bioactivity, biocompatibility and cytotoxicity evaluation. Microporous Mesoporous Mater 276:76–88. https://doi.org/10.1016/J.MICROMESO.2018.09.029

    Article  CAS  Google Scholar 

  172. Phatai P, Futalan CM, Utara S et al (2018) Structural characterization of cerium-doped hydroxyapatite nanoparticles synthesized by an ultrasonic-assisted sol-gel technique. Res Phys 10:956–963. https://doi.org/10.1016/J.RINP.2018.08.012

    Article  Google Scholar 

  173. Padmanabhan VP, Kulandaivelu R, Nellaiappan SNTS et al (2020) Facile fabrication of phase transformed cerium (IV) doped hydroxyapatite for biomedical applications—a health care approach. Ceram Int 46:2510–2522. https://doi.org/10.1016/J.CERAMINT.2019.09.245

    Article  CAS  Google Scholar 

  174. dos Santos MVB, Rocha LBN, Vieira EG et al (2019) Development of composite scaffolds based on cerium doped-hydroxyapatite and natural gums—biological and mechanical properties. Materials 12:2389. https://doi.org/10.3390/MA12152389

    Article  Google Scholar 

  175. Lu B, Zhu DY, Yin JH et al (2019) Incorporation of cerium oxide in hollow mesoporous bioglass scaffolds for enhanced bone regeneration by activating the ERK signaling pathway. Biofabrication 11:025012. https://doi.org/10.1088/1758-5090/AB0676

    Article  CAS  Google Scholar 

  176. Youness RA, Taha MA, El-Kheshen AA et al (2019) In vitro bioactivity evaluation, antimicrobial behavior and mechanical properties of cerium-containing phosphate glasses. Mater Res Express 6:075212. https://doi.org/10.1088/2053-1591/AB15B5

    Article  CAS  Google Scholar 

  177. Varini E, Sánchez-Salcedo S, Malavasi G et al (2019) Cerium (III) and (IV) containing mesoporous glasses/alginate beads for bone regeneration: Bioactivity, biocompatibility and reactive oxygen species activity. Mater Sci Eng C 105:109971. https://doi.org/10.1016/J.MSEC.2019.109971

    Article  CAS  Google Scholar 

  178. Nie L, Hou M, Wang T et al (2020) Nanostructured selenium-doped biphasic calcium phosphate with in situ incorporation of silver for antibacterial applications. Sci Rep 10:1–14. https://doi.org/10.1038/s41598-020-70776-7

    Article  CAS  Google Scholar 

  179. Kamaruzaman NA, Yusoff ARM, Malek NANN, Talib M (2021) Fabrication, characterization and degradation of electrospun poly(ε-caprolactone) infused with selenium nanoparticles. Malays J Fund Appl Sci 17:295–305. https://doi.org/10.11113/MJFAS.V17N3.2183

    Article  Google Scholar 

  180. Hu M, Fang J, Zhang Y et al (2020) Design and evaluation a kind of functional biomaterial for bone tissue engineering: selenium/mesoporous bioactive glass nanospheres. J Colloid Interface Sci 579:654–666. https://doi.org/10.1016/J.JCIS.2020.06.122

    Article  CAS  Google Scholar 

  181. He L, Li H, Chen X et al (2019) Selenium-substituted hydroxyapatite particles with regulated microstructures for osteogenic differentiation and anti-tumor effects. Ceram Int 45:13787–13798. https://doi.org/10.1016/J.CERAMINT.2019.04.075

    Article  CAS  Google Scholar 

  182. Aravamudhan A, Ramos DM, Nada AA, Kumbar SG (2014) Natural polymers: polysaccharides and their derivatives for biomedical applications. In: Kumbar SG, Laurencin CT, Deng M (eds) Natural and synthetic biomedical polymers. Elsevier, Amsterdam

    Google Scholar 

  183. Yamamoto A, Honma R, Sumita M, Hanawa T (2004) Cytotoxicity evaluation of ceramic particles of different sizes and shapes. J Biomed Mater Res A. https://doi.org/10.1002/jbm.a.20020

    Article  Google Scholar 

  184. Govardhane S, Shende P (2021) Polymeric-ceramic nanocomposites toxicity. In: Hussain CM, Thomas S (eds) Handbook of polymer and ceramic nanotechnology. Springer, Cham

    Google Scholar 

  185. Stránská E, Mandys V, Waitzová D (1981) On toxicity question of synthetic polymers and their extracts tested in vitro and in vivo. Polym Med 11:27–37

    Google Scholar 

  186. Waghmare NA, Arora A, Bhattacharjee A, Katti DS (2018) Sulfated polysaccharide mediated TGF-β1 presentation in pre-formed injectable scaffolds for cartilage tissue engineering. Carbohydr Polym 193:62–72. https://doi.org/10.1016/j.carbpol.2018.03.091

    Article  CAS  Google Scholar 

  187. Silva SS, Oliveira JM, Mano JF, Reis RL (2006) Physicochemical characterization of novel chitosan-soy protein/TEOS porous hybrids for tissue engineering applications. Mater Sci Forum 514–516:1000–1004

    Article  Google Scholar 

  188. Modulevsky DJ, Lefebvre C, Haase K et al (2014) Apple derived cellulose scaffolds for 3D mammalian cell culture. PLoS ONE 9:e97835

    Article  Google Scholar 

  189. Gershlak JR, Hernandez S, Fontana G et al (2017) Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials 125:13–22. https://doi.org/10.1016/j.biomaterials.2017.02.011

    Article  CAS  Google Scholar 

  190. Allan SJ, Ellis MJ, De Bank PA (2021) Decellularized grass as a sustainable scaffold for skeletal muscle tissue engineering. J Biomed Mater Res A 109:2471–2482. https://doi.org/10.1002/jbm.a.37241

    Article  CAS  Google Scholar 

  191. Jithendra P, Rajam AM, Kalaivani T et al (2013) Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications. ACS Appl Mater Interfaces 5:7291–7298. https://doi.org/10.1021/am401637c

    Article  CAS  Google Scholar 

  192. Contessi Negrini N, Toffoletto N, Farè S, Altomare L (2020) Plant tissues as 3D natural scaffolds for adipose bone and tendon tissue regeneration. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00723

    Article  Google Scholar 

  193. Wubneh A, Tsekoura EK, Ayranci C, Uludağ H (2018) Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater 80:1–30

    Article  CAS  Google Scholar 

  194. Haider A, Haider S, Rao Kummara M et al (2020) Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: a technical and statistical review. J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2020.01.002

    Article  Google Scholar 

  195. Mao D, Li Q, Bai N et al (2018) Porous stable poly(lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration. Carbohydr Polym 180:104–111. https://doi.org/10.1016/J.CARBPOL.2017.10.031

    Article  CAS  Google Scholar 

  196. Zhao P, Gu H, Mi H et al (2017) Fabrication of scaffolds in tissue engineering: a review. Front Mech Eng 13(1):107–119. https://doi.org/10.1007/S11465-018-0496-8

    Article  Google Scholar 

  197. Collins MN, Ren G, Young K et al (2021) Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv Funct Mater 31:2010609. https://doi.org/10.1002/ADFM.202010609

    Article  CAS  Google Scholar 

  198. Zeinali R, Del Valle LJ, Torras J, Puiggalí J (2021) Recent progress on biodegradable tissue engineering scaffolds prepared by thermally-induced phase separation (TIPS). Int J Mol Sci 22:3504. https://doi.org/10.3390/IJMS22073504

    Article  CAS  Google Scholar 

  199. Haider A, Haider S, Rao Kummara M et al (2020) Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: a technical and statistical review. J Saudi Chem Soc 24:186–215. https://doi.org/10.1016/J.JSCS.2020.01.002

    Article  CAS  Google Scholar 

  200. Jun I, Han HS, Edwards JR, Jeon H (2018) Electrospun fibrous scaffolds for tissue engineering: viewpoints on architecture and fabrication. Int J Mol Sci 19:745. https://doi.org/10.3390/IJMS19030745

    Article  Google Scholar 

  201. Prasad A (2021) State of art review on bioabsorbable polymeric scaffolds for bone tissue engineering. Mater Today Proc 44:1391–1400. https://doi.org/10.1016/J.MATPR.2020.11.622

    Article  CAS  Google Scholar 

  202. Mondal S, Nguyen TP, Pham VH et al (2020) Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram Int 46:3443–3455. https://doi.org/10.1016/j.ceramint.2019.10.057

    Article  CAS  Google Scholar 

  203. Bhasney SM, Bhagabati P, Kumar A, Katiyar V (2019) Morphology and crystalline characteristics of polylactic acid [PLA]/linear low density polyethylene [LLDPE]/microcrystalline cellulose [MCC] fiber composite. Compos Sci Technol 171:54–61. https://doi.org/10.1016/J.COMPSCITECH.2018.11.028

    Article  CAS  Google Scholar 

  204. Zhong T, Jiao Y, Guo L et al (2017) Investigations on porous PLA composite scaffolds with amphiphilic block PLA-b-PEG to enhance the carrying property for hydrophilic drugs of excess dose. J Appl Polym Sci. https://doi.org/10.1002/APP.44489

    Article  Google Scholar 

  205. Hughes J, Thomas R, Byun Y, Whiteside S (2012) Improved flexibility of thermally stable poly-lactic acid (PLA). Carbohydr Polym 88:165–172. https://doi.org/10.1016/J.CARBPOL.2011.11.078

    Article  CAS  Google Scholar 

  206. Muller J, González-Martínez C, Chiralt A (2017) Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. Eur Polym J 95:56–70. https://doi.org/10.1016/J.EURPOLYMJ.2017.07.019

    Article  CAS  Google Scholar 

  207. Ashok M, Meenakshi Sundaram N, Narayana Kalkura S (2003) Crystallization of hydroxyapatite at physiological temperature. Mater Lett 57:2066–2070. https://doi.org/10.1016/S0167-577X(02)01140-0

    Article  CAS  Google Scholar 

  208. Abdal-Hay A, Sheikh FA, Lim JK (2013) Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering. Colloids Surf B Biointerfaces 102:635–643. https://doi.org/10.1016/J.COLSURFB.2012.09.017

    Article  CAS  Google Scholar 

  209. Lizundia E, Vilas JL, León LM (2015) Crystallization, structural relaxation and thermal degradation in poly(l-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym 123:256–265. https://doi.org/10.1016/J.CARBPOL.2015.01.054

    Article  CAS  Google Scholar 

  210. Xu C, Chen J, Wu D et al (2016) Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: a phase interface-property relation study. Carbohydr Polym 146:58–66. https://doi.org/10.1016/J.CARBPOL.2016.03.058

    Article  CAS  Google Scholar 

  211. Gazzotti S, Farina H, Lesma G et al (2017) Polylactide/cellulose nanocrystals: the in situ polymerization approach to improved nanocomposites. Eur Polym J 94:173–184. https://doi.org/10.1016/J.EURPOLYMJ.2017.07.014

    Article  CAS  Google Scholar 

  212. Hassanajili S, Karami-Pour A, Oryan A, Talaei-Khozani T (2019) Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Mater Sci Eng C 104:109960. https://doi.org/10.1016/J.MSEC.2019.109960

    Article  Google Scholar 

  213. Lopresti F, Carfì Pavia F, Vitrano I et al (2020) Effect of hydroxyapatite concentration and size on morpho-mechanical properties of PLA-based randomly oriented and aligned electrospun nanofibrous mats. J Mech Behav Biomed Mater 101:103449. https://doi.org/10.1016/J.JMBBM.2019.103449

    Article  CAS  Google Scholar 

  214. Zhao X, Han Y, Li J et al (2017) BMP-2 immobilized PLGA/hydroxyapatite fibrous scaffold via polydopamine stimulates osteoblast growth. Mater Sci Eng C Mater Biol Appl 78:658–666. https://doi.org/10.1016/J.MSEC.2017.03.186

    Article  CAS  Google Scholar 

  215. Wei XP, Luo YL, Xu F, Chen YS (2016) Sensitive conductive polymer composites based on polylactic acid filled with multiwalled carbon nanotubes for chemical vapor sensing. Synth Met 215:216–222. https://doi.org/10.1016/J.SYNTHMET.2016.02.023

    Article  CAS  Google Scholar 

  216. Zhou Y, Lei L, Yang B et al (2018) Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites. Polym Test 68:34–38. https://doi.org/10.1016/J.POLYMERTESTING.2018.03.044

    Article  CAS  Google Scholar 

  217. Chen CC, Chueh JY, Tseng H et al (2003) Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24:1167–1173. https://doi.org/10.1016/S0142-9612(02)00466-0

    Article  CAS  Google Scholar 

  218. Gupta A, Prasad A, Mulchandani N et al (2017) Multifunctional nanohydroxyapatite-promoted toughened high-molecular-weight stereocomplex poly(lactic acid)-based bionanocomposite for both 3D-printed orthopedic implants and high-temperature engineering applications. ACS Omega. https://doi.org/10.1021/acsomega.7b00915

    Article  Google Scholar 

  219. Sharifabad SS, Derazkola HA, Esfandyar M et al (2021) Mechanical properties of HA@Ag/PLA nanocomposite structures prepared by extrusion-based additive manufacturing. J Mech Behav Biomed Mater 118:104455. https://doi.org/10.1016/j.jmbbm.2021.104455

    Article  CAS  Google Scholar 

  220. Mahboubi Soufiani A, Salehi M, Skrifvars M et al (2014) Thermomechanical properties of poly(lactic acid) films reinforced with hydroxyapatite and regenerated cellulose microfibers. J Appl Polym Sci. https://doi.org/10.1002/APP.40911

    Article  Google Scholar 

  221. Kulkova J, Moritz N, Suokas EO et al (2014) Osteointegration of PLGA implants with nanostructured or microsized β-TCP particles in a minipig model. J Mech Behav Biomed Mater 40:190–200. https://doi.org/10.1016/J.JMBBM.2014.08.028

    Article  CAS  Google Scholar 

  222. Kalfus J, Jancar J (2007) Immobilization of polyvinylacetate macromolecules on hydroxyapatite nanoparticles. Polymer (Guildf) 48:3935–3937. https://doi.org/10.1016/J.POLYMER.2007.04.049

    Article  CAS  Google Scholar 

  223. Kasuga T, Ota Y, Nogami M, Abe Y (2000) Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials 22:19–23. https://doi.org/10.1016/S0142-9612(00)00091-0

    Article  Google Scholar 

  224. Lin PL, Fang HW, Tseng T, Lee WH (2007) Effects of hydroxyapatite dosage on mechanical and biological behaviors of polylactic acid composite materials. Mater Lett 61:3009–3013. https://doi.org/10.1016/J.MATLET.2006.10.064

    Article  CAS  Google Scholar 

  225. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos B Eng 39:933–961. https://doi.org/10.1016/J.COMPOSITESB.2008.01.002

    Article  Google Scholar 

  226. Garoushi S, Lassila LVJ, Vallittu PK (2011) Influence of nanometer scale particulate fillers on some properties of microfilled composite resin. J Mater Sci Mater Med 22(7):1645–1651. https://doi.org/10.1007/S10856-011-4352-1

    Article  CAS  Google Scholar 

  227. Mystiridou E, Patsidis AC, Bouropoulos N (2021) Development and characterization of 3D printed multifunctional bioscaffolds based on PLA/PCL/HAp/BaTiO3 composites. Appl Sci 11:4253. https://doi.org/10.3390/APP11094253

    Article  CAS  Google Scholar 

  228. Hallab NJ, Bundy KJ, O’Connor K et al (2001) Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng 7:55–71. https://doi.org/10.1089/107632700300003297

    Article  CAS  Google Scholar 

  229. Xia Y, Sun J, Zhao L et al (2018) Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials 183:151–170. https://doi.org/10.1016/J.BIOMATERIALS.2018.08.040

    Article  CAS  Google Scholar 

  230. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915. https://doi.org/10.1016/J.BIOMATERIALS.2006.01.017

    Article  CAS  Google Scholar 

  231. Barua E, Das A, Pamu D et al (2019) Effect of thermal treatment on the physico-chemical properties of bioactive hydroxyapatite derived from caprine bone bio-waste. Ceram Int 45:23265–23277. https://doi.org/10.1016/j.ceramint.2019.08.023

    Article  CAS  Google Scholar 

  232. Nevado P, Lopera A, Bezzon V et al (2020) Preparation and in vitro evaluation of PLA/biphasic calcium phosphate filaments used for fused deposition modelling of scaffolds. Mater Sci Eng C 114:111013. https://doi.org/10.1016/J.MSEC.2020.111013

    Article  CAS  Google Scholar 

  233. Alksne M, Kalvaityte M, Simoliunas E et al (2020) In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration. J Mech Behav Biomed Mater 104:103641. https://doi.org/10.1016/j.jmbbm.2020.103641

    Article  CAS  Google Scholar 

  234. Zhou X, Zhou G, Junka R et al (2021) Fabrication of polylactic acid (PLA)-based porous scaffold through the combination of traditional bio-fabrication and 3D printing technology for bone regeneration. Colloids Surf B Biointerfaces 197:111420. https://doi.org/10.1016/j.colsurfb.2020.111420

    Article  CAS  Google Scholar 

  235. Bernardo MP, da Silva BCR, Hamouda AEI et al (2022) PLA/hydroxyapatite scaffolds exhibit in vitro immunological inertness and promote robust osteogenic differentiation of human mesenchymal stem cells without osteogenic stimuli. Sci Rep 12:1–15. https://doi.org/10.1038/s41598-022-05207-w

    Article  CAS  Google Scholar 

  236. Esposito Corcione C, Gervaso F, Scalera F et al (2019) Highly loaded hydroxyapatite microsphere/ PLA porous scaffolds obtained by fused deposition modelling. Ceram Int. https://doi.org/10.1016/j.ceramint.2018.07.297

    Article  Google Scholar 

  237. Turnbull G, Clarke J, Picard F et al (2018) 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 3:278–314

    Article  Google Scholar 

  238. Hassanajili S, Karami-Pour A, Oryan A, Talaei-Khozani T (2019) Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2019.109960

    Article  Google Scholar 

  239. Li J, Chen M, Wei X et al (2017) Evaluation of 3D-printed polycaprolactone scaffolds coated with freeze-dried platelet-rich plasma for bone regeneration. Materials. https://doi.org/10.3390/ma10070831

    Article  Google Scholar 

  240. Xiao W, Zaeem MA, Li G et al (2017) Tough and strong porous bioactive glass-PLA composites for structural bone repair. J Mater Sci. https://doi.org/10.1007/s10853-017-0777-3

    Article  Google Scholar 

  241. Jiang S, Wang M, He J (2021) A review of biomimetic scaffolds for bone regeneration: toward a cell-free strategy. Bioeng Transl Med. https://doi.org/10.1002/btm2.10206

    Article  Google Scholar 

  242. Dilogo IH, Rahmatika D, Pawitan JA et al (2021) Allogeneic umbilical cord-derived mesenchymal stem cells for treating critical-sized bone defects: a translational study. Eur J Orthop Surg Traumatol. https://doi.org/10.1007/s00590-020-02765-5

    Article  Google Scholar 

  243. Calori GM, Tagliabue L, Gala L et al (2008) Application of rhBMP-7 and platelet-rich plasma in the treatment of long bone non-unions. A prospective randomised clinical study on 120 patients. Injury. https://doi.org/10.1016/j.injury.2008.08.011

    Article  Google Scholar 

  244. Jager M, Jelinek E, Wess K et al (2009) Bone marrow concentrate: a novel strategy for bone defect treatment. Curr Stem Cell Res Ther. https://doi.org/10.2174/157488809787169039

    Article  Google Scholar 

  245. Govender S, Csimma C, Genant HK et al (2002) Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg. https://doi.org/10.2106/00004623-200212000-00001

    Article  Google Scholar 

  246. Swiontkowski MF, Aro HT, Donell S et al (2006) Recombinant human bone morphogenetic protein-2 in open tibial fractures: a subgroup analysis of data combined from two prospective randomized studies. J Bone Joint Surg. https://doi.org/10.2106/JBJS.E.00499

    Article  Google Scholar 

  247. Jäger M, Herten M, Fochtmann U et al (2011) Bridging the gap: bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J Orthop Res. https://doi.org/10.1002/jor.21230

    Article  Google Scholar 

  248. Philip SJ, Kumar RJ, Menon KV (2005) Morphological study of rib regeneration following costectomy in adolescent idiopathic scoliosis. Eur Spine J. https://doi.org/10.1007/s00586-005-0949-8

    Article  Google Scholar 

  249. Cuthbert RJ, Churchman SM, Tan HB et al (2013) Induced periosteum a complex cellular scaffold for the treatment of large bone defects. Bone. https://doi.org/10.1016/j.bone.2013.08.009

    Article  Google Scholar 

  250. Hendrich C, Engelmaier F, Waertel G et al (2009) Safety of autologous bone marrow aspiration concentrate transplantation: initial experiences in 101 patients. Orthop Rev (Pavia). https://doi.org/10.4081/or.2009.e32

    Article  Google Scholar 

  251. Wu S, Liu X, Yeung KWK et al (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep 80:1–36

    Article  Google Scholar 

  252. Grand View Research (2023) Scaffold technology market size, share & trends analysis report. https://www.grandviewresearch.com/industry-analysis/scaffold-technology-market

  253. Sameer Joshi (2021) Tissue engineering market is expected to reach US$ 29,659.93 million by 2028. The insight partners. https://www.theinsightpartners.com/pr/tissue-engineering-market. Accessed 19 May 2022

  254. Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA (2015) Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. Biomed Res Int. https://doi.org/10.1155/2015/729076

    Article  Google Scholar 

  255. Precedence research (2021) Scaffold technology market. https://www.precedenceresearch.com/scaffold-technology-market. Published: November 2022

  256. Heimann R (2020) Materials for medical application. De Gruyter, Berlin, Boston. https://doi.org/10.1515/9783110619249

    Book  Google Scholar 

  257. Zhou H, Ge J, Bai Y et al (2019) Translation of bone wax and its substitutes: history, clinical status and future directions. J Orthop Translat 17:64–72

    Article  Google Scholar 

  258. Bharathi R, Ganesh SS, Harini G et al (2022) Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int J Biol Macromol 222:132–153. https://doi.org/10.1016/j.ijbiomac.2022.09.058

    Article  CAS  Google Scholar 

  259. The Insight Partners (2022) Biomedical materials market forecast to 2028. https://www.theinsightpartners.com/reports/biomedical-materials-market

  260. The Insight Partners (2022) 3D bio printing market forecast to 2028. https://www.theinsightpartners.com/reports/3d-bioprinting-market

  261. The Insight Partners (2022) Biomaterials devices market forecast to 2028. https://www.theinsightpartners.com/reports/biomaterials-devices-market

  262. The Insight Partners (2022) Medical biomimetics market forecast to 2028. https://www.theinsightpartners.com/reports/medical-biomematics-market

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Department of Chemicals and Petrochemicals, Ministry of Chemicals and Fertilizers (DCPC), Government of India [F:No 25012/01/2020-PC-II (FTS: 16020)]. We would like to thank the Laboratory of Advanced Research in Polymeric Materials for the completion of manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, concepts, and design. The first draft of the review article was written by IP. The part containing clinical trials was written by YA. The manuscript was reviewed and subsequently edited by Dr. SM.

Corresponding author

Correspondence to Smita Mohanty.

Ethics declarations

Conflict of interest

The authors declare that we have no competing interest to declare that are relevant to content of this article.

Ethical approval

Not applicable.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pattanayak, I., Alex, Y. & Mohanty, S. Advancing strategies towards the development of tissue engineering scaffolds: a review. J Mater Sci 58, 12847–12898 (2023). https://doi.org/10.1007/s10853-023-08798-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08798-5

Navigation