Skip to main content
Log in

Volcanic particle materials in polymer composites: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper reviews a literature survey on the usage of volcanic particle materials as an alternative filler material in polymer composites. Also, it highlights different types of volcanic particle materials and their potential effect on the performance of polymer composites. The review begins with Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analysis of different volcanic materials. Then, it reviews the thermal and mechanical properties of polymer composites that filled with different volcanic particle materials such as volcanic ash, pumice, perlite, and tuff. Reviewed articles have demonstrated that volcanic particle materials can serve as a polymer composite filler. However, there are several factors such as volcanic particle type, size, surface treatment, dispersion, filler concentration, and interfacial interaction with polymer matrix that should be considered and optimized to achieve a balanced polymer composite with its desired properties. Further, the review provides some insights on the gap in the research of volcanic particle material in polymer composites. In particular, the research of volcanic particle materials in different kind of polymers especially bio-based and recycled ones according to the cost-effective and green applications was suggested to be focused.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Reproduced with permission from reference [44]. Copyright [2000, Elsevier]

Figure 2

Reproduced with permission from reference [34]. Copyright [2016, Wiley]

Figure 3

Reproduced with permission from reference [36]. Copyright [2006, Elsevier]

Figure 4

Reproduced with permission from reference [64]. Copyright [2020, IOP Science]

Figure 5

Reproduced with permission from reference [10]. Copyright [2019, Elsevier]

Figure 6

Reproduced with permission from reference [17]. Copyright [2019, Elsevier]

Figure 7

Reproduced with permission from reference [41]. Copyright [2016, JCHPS]

Figure 8

Reproduced with permission from reference [36]. Copyright [2006, Elsevier]

Figure 9

Reproduced with permission from reference [65]. Copyright [2006, SpringerLink]

Figure 10

Reproduced with permission from reference [15]. Copyright [2019, IOP Science]

Figure 11

Reproduced with permission from reference [18], Copyright [2020, De Gruyter] and b pumice. Reproduced with permission from reference [9], Copyright [2017, Elsevier]

Figure 12

Reproduced with permission from reference [34]. Copyright [2016, Wiley]

Figure 13

Reproduced with permission from reference [68]. Copyright [2015, Wiley]

Figure 14

Reproduced with permission from reference [10]. Copyright [2019, Elsevier]

Figure 15

Reproduced with permission from reference [76]. Copyright [2016, European Physical Society]

Figure 16

Reproduced with permission from reference [34]. Copyright [2016, Wiley]

Figure 17

Reproduced with permission from reference [41]. Copyright [2016, JCHPS]

Figure 18

Reproduced with permission from reference [77]. Copyright [2016, European Physical Society]

Figure. 19

Reproduced with permission from reference [78]. Copyright [2014, European Physical Society]

Figure 20

Reproduced with permission from reference [17]. Copyright [2019, Elsevier]

Figure 21

Reproduced with permission from reference [18]. Copyright [2020, De Gruyter]

Figure 22

Reproduced with permission from reference [65]. Copyright [2006, SpringerLink]

Figure 23

Reproduced with permission from reference [10]. Copyright [2019, Elsevier]

Figure 24

Reproduced with permission from reference [19]. Copyright [2020, MDPI]

Figure 25

Reproduced with permission from reference [35]. Copyright [2011, Elsevier]

Figure 26

Reproduced with permission from reference [78]. Copyright [2014, European Physical Society]

Figure 27

Reproduced with permission from reference [73]. Copyright [2018, DergiPark]

Figure 28

Reproduced with permission from reference [15]. Copyright [2019, IOP Science]

Figure 29

Reproduced with permission from reference [76]. Copyright [2016, European Physical Society]

Figure 30

Reproduced with permission from reference [94]. Copyright [2016, Wiley]

Figure 31

Reproduced with permission from reference [78]. Copyright [2014, European Physical Society]

Figure 32

Reproduced with permission from reference [68]. Copyright [2015, Wiley]

Figure 33

Reproduced with permission from reference [18]. Copyright [2020, De Gruyter]

Figure 34

Reproduced with permission from reference [15]. Copyright [2019, IOP Science]

Figure 35

Reproduced with permission from reference [19]. Copyright [2020, MDPI]

Figure 36

Reproduced with permission from reference [17]. Copyright [2019, Elsevier]

Figure 37

Reproduced with permission from reference [18]. Copyright [2020, De Gruyter]

Figure 38

Reproduced with permission from reference [49]. Copyright [2015, Foundation for Materials Science and Engineering]

Figure 39

Reproduced with permission from reference [107]. Copyright [2018, Wiley]

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Avcu E, Coban O, Bora MO, Fidan S, Sinmazcelik T, Ersoy O (2014) Possible use of volcanic ash as a filler in Polyphenylene Sulfide composites: thermal, mechanical, and erosive wear properties. Polym Compos 35:1826–1833. https://doi.org/10.1002/pc.22847

    Article  CAS  Google Scholar 

  2. Akkaya R (2013) Uranium and thorium adsorption from aqueous solution using a novel polyhydroxyethylmethacrylate-pumice composite. J Environ Radioact 120:58–63. https://doi.org/10.1016/j.jenvrad.2012.11.015

    Article  CAS  Google Scholar 

  3. Kitis M, Karakaya E, Yigit NO, Civelekoglu G, Akcil A (2005) Heterogeneous catalytic degradation of cyanide using copper-impregnated pumice and hydrogen peroxide. Water Res 39:1652–1662. https://doi.org/10.1016/j.watres.2005.01.027

    Article  CAS  Google Scholar 

  4. Kurtulmus E, Karaboyacı M and Yigitarslan S (2013) Production and characterization of a composite insulation material from waste polyethylene teraphtalates. 3rd International Advances in Applied Physics and Materials Science Congress, AIP Conf Proc 1569, 487–491; doi: https://doi.org/10.1063/1.4849321

  5. Mboya HA, Njau KN, Mrema AL, King’ondu CK (2019) Influence of scoria and pumice on key performance indicators of Portland cement concrete. Constr Build Mater 197:444–453. https://doi.org/10.1016/j.conbuildmat.2018.11.228

    Article  CAS  Google Scholar 

  6. Felekoglu B (2012) A method for improving the early strength of pumice concrete blocks by using alkyl alkoxy silane (AAS). Constr Build Mater 28:305–310. https://doi.org/10.1016/j.conbuildmat.2011.07.026

    Article  Google Scholar 

  7. Sari D, Pasamehmetoglu AG (2005) The effects of gradation and admixture on the pumice lightweight aggregate concrete. Cem Concr Res 35:936–942. https://doi.org/10.1016/j.cemconres.2004.04.020

    Article  CAS  Google Scholar 

  8. Samarzija-Jovanovic S, Jovanovic V, Markovic G, Zekovic I, Marinovic-Cincovic M (2014) Properties of vulcanized polyisoprene rubber composites filled with opalized white tuff and precipitated silica. Hindawi Publ Corp, Sci World J 2014:1–9. https://doi.org/10.1155/2014/913197

    Article  Google Scholar 

  9. Correcher V, Gomez-Ros JM, Dogan T, Garcia-Guinea J, Topaksu M (2017) Optical, spectral and thermal properties of natural pumice glass. Radiat Phys Chem 130:69–7570. https://doi.org/10.1016/j.radphyschem.2016.08.002

    Article  CAS  Google Scholar 

  10. Raji M, Nekhlaoui S, Amrani El HassaniEssassi IEEM, Essabir H, Rodrigue D, Bouhfid R, Qaiss A (2019) Utilization of volcanic amorphous aluminosilicate rocks (perlite) as alternative materials in lightweight composites. Compos Part B 165:47–54. https://doi.org/10.1016/j.compositesb.2018.11.098

    Article  CAS  Google Scholar 

  11. Atagür M, Sarikanat M, Uysalman T, Polat O, Elbeyli IY, Seki Y, Sever K (2018) Mechanical, thermal, and viscoelastic investigations on expanded perlite–filled high-density polyethylene composite. J Elastomers Plast 50:747–761. https://doi.org/10.1177/0095244318765045

    Article  CAS  Google Scholar 

  12. Doğan M, Yüksel H, Kizilduman BK (2021) Characterization and thermal properties of chitosan/perlite nanocomposites. Int J Mater Res 112:5. https://doi.org/10.1515/ijmr-2020-8007

    Article  CAS  Google Scholar 

  13. Allameh-Haery H, Kisi E, Fiedler T (2016) Novel cellular perlite–epoxy foams: effect of density on mechanical properties. J Cell Plast 53:1–18. https://doi.org/10.1177/0021955X16652110

    Article  Google Scholar 

  14. Allameh-Haery H, Wensrich CM, Fiedler T, Kisi E (2016) Novel cellular perlite-epoxy foams: effects of particle size. J Cell Plast 53:1–26. https://doi.org/10.1177/0021955X16670528

    Article  Google Scholar 

  15. Alghadi AM, Tirkes S, Tayfun U (2020) Mechanical, thermo-mechanical and morphological characterization of ABS based composites loaded with perlite mineral. Mater Res Express 7:015301. https://doi.org/10.1088/2053-1591/ab551b

    Article  CAS  Google Scholar 

  16. Tekin N, Kadıncı E, Demirbaş Ö, Alkan M, Kara A, Doğan M (2006) Surface properties of poly(vinylimidazole)-adsorbed expanded perlite. Microporous Mesoporous Mater 93:125–133. https://doi.org/10.1016/j.micromeso.2006.02.009

    Article  CAS  Google Scholar 

  17. de Gerhardt Oliveira A, Jandorno JC, da Dutra Rocha EB, de Furtado Sousa AM, da Nazareth Silva AL (2019) Evaluation of expanded perlite behavior in PS/Perlite composites. Appl Clay Sci 181:105223. https://doi.org/10.1016/j.clay.2019.105223

    Article  CAS  Google Scholar 

  18. Lapčík L, Vašina M, Lapčíková B, Staněk M, Ovsík M, Murtaja Y (2020) Study of the material engineering properties of high-density poly(ethylene)/perlite nanocomposite materials. Nanotechnol Rev 9:1491–1499. https://doi.org/10.1515/ntrev-2020-0113

    Article  CAS  Google Scholar 

  19. Szadkowski B, Marzec A, Rybinski P, Zukowski W, Zaborski M (2020) Characterization of ethylene–propylene composites filled with perlite and vermiculite minerals: mechanical, barrier, and flammability properties. Materials 13(3):585. https://doi.org/10.3390/ma13030585

    Article  CAS  Google Scholar 

  20. Sahraeian R, Esfandeh M (2017) Mechanical and morphological properties of LDPE/perlite nanocomposite films. Polym Bull 74:1327–1341. https://doi.org/10.1007/s00289-016-1779-z

    Article  CAS  Google Scholar 

  21. Bush AL (2001) Construction Materials: Lightweight Aggregates. Encycl Mater: Sci Technol, ISBN: 0-08-0431526, 1550-1559

  22. Kucharczyk W, Dusiński D, Żurowski W, Gumiński R (2018) Effect of composition on ablative properties of epoxy composites modified with expanded perlite. Compos Struct 183:654–662. https://doi.org/10.1016/j.compstruct.2017.08.047

    Article  Google Scholar 

  23. Masłowski M, Miedzianowska J, Strzelec K (2019) Hybrid straw/perlite reinforced natural rubber biocomposites. J Bionic Eng 16:1127–1142. https://doi.org/10.1007/s42235-019-0124-2

    Article  Google Scholar 

  24. Sahraeian R, Hashemi SA, Esfandeh M, Ghasemi I (2012) Preparation of nanocomposites based on LDPE/Perlite: mechanical and morphological studies. Polym Polym Compos 20:639–646. https://doi.org/10.1177/096739111202000708

    Article  CAS  Google Scholar 

  25. Członka S, Kairyte A, Miedzinska K, Strakowska A (2021) Polyurethane composites reinforced with walnut shell filler treated with perlite, montmorillonite and halloysite. Int J Mol Sci 22:7304. https://doi.org/10.3390/ijms22147304

    Article  CAS  Google Scholar 

  26. Tekin N, Dinçer A, Demirbaş Ö, Alkan M (2010) Adsorption of cationic polyacrylamide (C-PAM) on expanded perlite. Appl Clay Sci 50:125–129. https://doi.org/10.1016/j.clay.2010.07.014

    Article  CAS  Google Scholar 

  27. Papa E, Medri V, Murri AN, Laghi L, De Aloysio G, Bandini S, Landi E (2018) Characterization of alkali bonded expanded perlite. Constr Build Mater 191:1139–1147. https://doi.org/10.1016/j.conbuildmat.2018.10.086

    Article  CAS  Google Scholar 

  28. Rashad AM (2016) A synopsis about perlite as building material - a best practice guide for Civil Engineer. Constr Build Mater 121:338–353. https://doi.org/10.1016/j.conbuildmat.2016.06.001

    Article  CAS  Google Scholar 

  29. Lemougna PN, Wang K, Tang Q, Nzeukou AN, Billong N, Melo UC, Xue-min C (2018) Review on the use of volcanic ashes for engineering applications. Res, Conserv Recycl 137:177–190. https://doi.org/10.1016/j.resconrec.2018.05.031

  30. Siddique R (2011) Effect of volcanic ash on the properties of cement paste and mortar. Resour Conserv Recycl 56:66–70. https://doi.org/10.1016/j.resconrec.2011.09.005

    Article  Google Scholar 

  31. Kabra S, Katara S, Rani A (2013) Characterization and study of Turkish Perlite. Int J Innov Res Sci Eng Technol 2(9):4319–4326

    Google Scholar 

  32. Onar AN, Balkaya N, Akyüz T (1996) Phosphate removal by adsorption. Environ Technol 17:207–213. https://doi.org/10.1080/09593331708616378

    Article  CAS  Google Scholar 

  33. Mekonnen DT, Alemayehu E, Lennartz B (2021) Adsorptive removal of phosphate from aqueous solutions using low-cost volcanic rocks: kinetics and equilibrium approaches. Materials 14(5):1312. https://doi.org/10.3390/ma14051312

    Article  CAS  Google Scholar 

  34. Ramesan MT, Jose C, Jayakrishnan P, Anilkumar T (2018) Multifunctional ternary composites of poly (Vinyl Alcohol)/cashew tree gum/pumice particles. Polym Compos 39:38–45. https://doi.org/10.1002/pc.23899

    Article  CAS  Google Scholar 

  35. Yılmaz K, Akgoz A, Cabuk M, Karaagac H, Karabulut O, Yavuz M (2011) Electrical transport, optical and thermal properties of polyaniline–pumice composites. Mater Chem Phys 130:956–961. https://doi.org/10.1016/j.matchemphys.2011.08.017

    Article  CAS  Google Scholar 

  36. Gök A, Göde F, Türkaslan BE (2016) Synthesis and characterization of polyaniline/pumice (PAn/Pmc) composite. Mater Sci Eng, B 133:20–25. https://doi.org/10.1016/j.mseb.2006.04.040

    Article  CAS  Google Scholar 

  37. Almiron J, Roudet F, Duquesne S (2019) Influence of volcanic ash, rice husk ash, and solid residue of catalytic pyrolysis on the flame-retardant properties of polypropylene composites. J Fire Sci 37(4–6):434–451. https://doi.org/10.1177/0734904119867912

    Article  CAS  Google Scholar 

  38. Kufel A, Kuciel S (2019) Composites based on polypropylene modified with natural fillers to increase stiffness. Tech Trans 1:187–195. https://doi.org/10.4467/2353737XCT.19.013.10053

    Article  Google Scholar 

  39. Tarverdi K, Madoyan Z (2014) Preparation and properties of polypropylene and PA 6 composites reinforced with Armenian tuff stone. Eur Sci J Nov /SPECIAL/ edition vol.2 ISSN: 1857–7881 (Print) e - ISSN 1857–7431

  40. Elmastaş N (2012) A mine becoming increasingly important for economy of Turkey: pumice. J Int Soc Res 5:197–206

    Google Scholar 

  41. Jayakrishnan P, Ramesan MT (2016) Synthesis, characterization and properties of poly (vinyl alcohol)/ chemically modified and unmodified pumice composites. Journal of Chemical and Pharmaceutical Sciences, Special Issue 1:97–104. ISSN: 0974–2115

  42. Eroğlu G, Şahiner M (2020) Dünyada ve Türkiye’de Pomza. Report, Maden Tetkik ve Arama Genel Müdürlüğü. https://www.maden.org.tr/resimler/ekler/3f09b21324d1ed3_ek.pdf

  43. Ramesan MT, George A, Jayakrishnan P, Kalaprasad G (2016) Role of pumice particles in the thermal, electrical and mechanical properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) composites. J Therm Anal Calorim 126:511–519. https://doi.org/10.1007/s10973-016-5507-6

    Article  CAS  Google Scholar 

  44. Akbal FÖ, Akdemir N, Onar AN (2000) FT-IR spectroscopic detection of pesticide after sorption onto modified pumice. Talanta 53:131–135. https://doi.org/10.1016/S0039-9140(00)00380-5

    Article  Google Scholar 

  45. Hossain KMA (2003) Blended cement using volcanic ash and pumice. Cem Concr Res 33:1601–1605. https://doi.org/10.1016/S0008-8846(03)00127-3

    Article  CAS  Google Scholar 

  46. Yavuz M, Çabuk M (2007) Electrorheological properties of pumice/silicone oil suspension. J Mater Sci 42:2132–2137. https://doi.org/10.1007/s10853-006-1296-9

    Article  CAS  Google Scholar 

  47. Budzik G, Galina H, Heneczkowski M, Mossety-Leszczak B, Oleksy M (2018) Non-combustible epoxy composites [in Polish]. Mater Eng 5:1372–1377

    Google Scholar 

  48. Demirbas Ö, Alkan M, Dogan M (2002) The Removal of victoria blue from aqueous solution by adsorption on a low-cost material. Adsorption 8:341–349. https://doi.org/10.1023/A:1021589514766

    Article  CAS  Google Scholar 

  49. Vuluga Z, Paceagiu J, Iorga M, Coarna M (2015) Influence of siliceous materials on the elasticity modulus and thermal conductivity of polymeric composite materials. Rom J Mater 45(4):370–376

    Google Scholar 

  50. Gündüz L, Bekar M, Şapcı N (2007) Influence of a new type of additive on the performance of polymer-lightweight mortar composites. Cem Concr Compos 29:594–602. https://doi.org/10.1016/j.cemconcomp.2007.03.007

    Article  CAS  Google Scholar 

  51. Sarı A, Karaipekli A (2008) Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage. Mater Chem Phys 109:459–464. https://doi.org/10.1016/j.matchemphys.2007.12.016

    Article  CAS  Google Scholar 

  52. Zhang D, Tian S, Xiao D (2007) Experimental study on the phase change behavior of phase change material confined in pores. Sol Energy 81:653–660. https://doi.org/10.1016/j.solener.2006.08.010

    Article  CAS  Google Scholar 

  53. Özkan ŞG and Tuncer G (2001) Pomza Madenciliğine Genel Bir Bakış. 4. Endüstriyel Hammaddeler Sempozyumu, İzmir, Türkiye

  54. Ersoy B, Sariisik A, Dikmen S, Sariisik G (2010) Characterization of acidic pumice and determination of its electrokinetic properties in water. Powder Technol 197:129–135

    Article  CAS  Google Scholar 

  55. Siddique R, (2012) Properties of concrete made with volcanic ash (Review). Resources, Conservation and Recycling 66: 40–44. http://dx.doi.org/https://doi.org/10.1016/j.resconrec.2012.06.010

  56. Biagdassarov N, Ritter F, Yanev Y (1999) Kinetics of perlite glasses degassing: TG and DSC analysis. Glastech Ber Glass Sci Technol 72(9):277–290

    Google Scholar 

  57. Bideci ÖS, Bideci A, Gültekin AH, Oymael S, Yıldırım H (2014) Polymer coated pumice aggregates and their properties. Composites 67:239–243. https://doi.org/10.1016/j.compositesb.2013.10.009

    Article  CAS  Google Scholar 

  58. Karaipekli A, Sari A, Kaygusuz K (2009) Thermal characteristics of paraffin/expanded perlite composite for latent heat thermal energy storage. Energy Sour, Part A 31:814–823. https://doi.org/10.1080/15567030701752768

    Article  CAS  Google Scholar 

  59. Sever K, Atagür M, Tunçalp M, Altay L, Seki Y, Sarıkanat M (2018) The effect of pumice powder on mechanical and thermal properties of polypropylene. J Thermoplast Compos Mater 32(8):1092–1106

    Article  Google Scholar 

  60. Kallergis G, Pisania M, Simitzis J (2013) Manufacture and characterization of heat resistant and insulating new composites based on novolac resin – carbon fibers – perlite. Macromol Symp 331–332:137–143. https://doi.org/10.1002/masy.201300073

    Article  CAS  Google Scholar 

  61. Li TT, Chuang YC, Huang CH, Lou CW, Lin JH (2015) Applying vermiculite and perlite fillers to sound-absorbing/thermal-insulating resilient PU foam composites. Fibers Polym 16(3):691–698. https://doi.org/10.1007/s12221-015-0691-8

    Article  CAS  Google Scholar 

  62. Dike AS (2020) Modification of pumice mineral and its use as additive for poly (Lactic Acid) based bio-composite materials. AKU J Sci Eng 20:111–117. https://doi.org/10.35414/akufemubid.618993

    Article  Google Scholar 

  63. Khorzughy SH, Eslamkish T, Ardejani FD, Heydartaemeh MR (2015) Cadmium removal from aqueous solutions by pumice and nano-pumice. Korean J Chem Eng 32(1):88–96. https://doi.org/10.1007/s11814-014-0168-2

    Article  CAS  Google Scholar 

  64. Rahmaniar ST, Prasetya HA, Marlina P, Purbaya M, Chalid M, Hasan A (2020) The effect of pumice and clay composition in natural rubber-ethylene propylene diene monomer blends towards its curing characteristics and physic-mechanical properties. Mater Sci Eng 980:012003. https://doi.org/10.1088/1757-899X/980/1/012003

    Article  CAS  Google Scholar 

  65. Celik AG, Kilic AM, Cakal GO (2013) Expanded perlite aggregate characterization for use as a lightweight construction raw material”. Physicochem Probl Miner Process 49(2):689–700. https://doi.org/10.5277/ppmp130227

    Article  CAS  Google Scholar 

  66. Roulia M, Chassapis K, Kapoutsis JA, Kamitsos EI, Savvidis T (2006) Influence of thermal treatment on the water release and the glassy structure of perlite. J Mater Sci 41:5870–5881. https://doi.org/10.1007/s10853-006-0325-z

    Article  CAS  Google Scholar 

  67. Reka AA, Pavlovski B, Lisichkov K, Jashari A, Boev B, Boev I, Lazarova M, Eskizeybek V, Oral A, Jovanovski G, Makreski P (2019) Chemical, mineralogical and structural features of native and expanded perlite from Macedonia. J Croat Geol Surv Croat Geol Soc 72(3):215–221. https://doi.org/10.4154/gc.2019.18

    Article  CAS  Google Scholar 

  68. Sahin A, Karsli NG, Sinmazcelik T (2016) Comparison of the mechanical, thermomechanical, thermal, and morphological properties of pumice and calcium carbonate-filled poly(phenylene sulphide) composites. Polym Compos 37:3160–3166. https://doi.org/10.1002/pc.23513

    Article  CAS  Google Scholar 

  69. Karaipekli A, Biçer A, Sarı A, Tyagi VV (2017) Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manage 134:373–381. https://doi.org/10.1016/j.enconman.2016.12.053

    Article  CAS  Google Scholar 

  70. Yavuz M, Gode F, Pehlivan E, Ozmert S, Sharma YC (2008) An economic removal of Cu2+ and Cr3+ on the new adsorbents: pumice and polyacrylonitrile/pumice composite. Chem Eng J 137:453–461. https://doi.org/10.1016/j.cej.2007.04.030

    Article  CAS  Google Scholar 

  71. Angelopoulos PM, Kenanakis G, Viskadourakis Z, Tsakiridis P, Vasilopoulos KC, Karakassides MA, Taxiarchou M (2022) Manufacturing of ABS/expanded perlite filament for 3D printing of lightweight components through fused deposition modeling”. Materials 54:14–21. https://doi.org/10.1016/j.matpr.2021.06.351

    Article  CAS  Google Scholar 

  72. Karaca E, Omeroglu S, Akcam O (2016) Investigation of the effects of perlite additive on some comfort and acoustical properties of polyester fabrics. J Appl Polym Sci 133(16):44128. https://doi.org/10.1002/app.43128

    Article  CAS  Google Scholar 

  73. Tayfun Ü, Kanbur Y (2018) Mechanical, physical and morphological properties of acidic and basic pumice containing polypropylene composites. Sak Univ J Sci 22(2):333–339. https://doi.org/10.16984/saufenbilder.287861

    Article  Google Scholar 

  74. Davachi SM, Heidari BS, Sahraeian R, Abbaspourrad A (2019) The effect of nanoperlite and its silane treatment on the crystallinity, rheological, optical, and surface properties of polypropylene/nanoperlite nanocomposite films. Compos B 175:107088. https://doi.org/10.1016/j.compositesb.2019.107088

    Article  CAS  Google Scholar 

  75. Çoban O (2015) Solid particle erosion behavior of volcanic Ash/PVC composites. Acta Phys Pol, A 127:998–1001. https://doi.org/10.12693/APhysPolA.127.998

    Article  CAS  Google Scholar 

  76. Çoban O, Bora MÖ, Kutluk T, Fidan S, Sınmazçelik T (2016) Effect of silane as coupling agent on dynamic mechanical properties of volcanic ash filled PPS composites. Acta Phys Pol, A 129:492–494. https://doi.org/10.12693/APhysPolA.129.492

    Article  CAS  Google Scholar 

  77. Kutluk T, Çoban O, Bora MÖ, Fidan S, Sınmazçelik T (2016) Silane coupling efficiency on thermal properties of volcanic ash filled PPS composites. Acta Phys Pol, A 129:498–500. https://doi.org/10.12693/APhysPolA.129.498

    Article  CAS  Google Scholar 

  78. Sahin AE, Yildiran Y, Avcu E, Fidan S, Sinmazcelik T (2014) Mechanical and thermal properties of pumice powder filled PPS composites. Acta Phys Pol, A 125:518–520. https://doi.org/10.12693/APhysPolA.125.518

    Article  Google Scholar 

  79. Folorunso O, Dodds C, Dimitrakis G, Kingman S (2012) Continuous energy efficient exfoliation of vermiculite through microwave heating. Int J Miner Process 114–117:69–79. https://doi.org/10.1016/j.minpro.2012.10.003

    Article  CAS  Google Scholar 

  80. Cicconi MR, Neuville DR (2019) 22. Natural Glasses. Springer Handbook of Glass, Springer Handbooks

  81. Jing Q, Fang L, Liu H, Liu P (2011) Preparation of surface-vitrified micron sphere using perlite from Xinyang, China. Appl Clay Sci 53:745–748. https://doi.org/10.1016/j.clay.2011.07.005

    Article  CAS  Google Scholar 

  82. Heide K, Heide G (2011) Vitreous state in nature – Origin and properties. Chem Erde Geochem 71:305–33. https://doi.org/10.1016/j.chemer.2011.10.001

    Article  CAS  Google Scholar 

  83. Deganello G, Liotta L, Longo A, Martorana A, Yanev Y, Zotov N (1998) Structure of natural water containing glasses from Lipari (Italy) and Eastern Rhodopes (Bulgaria): SAXS, WAXS and IR studies. J Non-Cryst Solids 232:547–553. https://doi.org/10.1016/S0022-3093(98)00429-3

    Article  Google Scholar 

  84. Krzyzak A, Kucharczyk W, Gaska J, Szczepaniak R (2018) Ablative test of composites with epoxy resin and expanded perlite: review. Compos Struct 202:978–987. https://doi.org/10.1016/j.compstruct.2018.05.018

    Article  Google Scholar 

  85. Amrani S, Halimi Y, Tahiri M (2014) Composite materials using expanded perlite as a charge and plastic wastes as reinforcement, elaboration and properties. GSTF Int J Chem Sci (JChem) 1(2):1–8. https://doi.org/10.7603/s40837-014-0003-7

    Article  Google Scholar 

  86. Angelopoulos PM, Maliachova C, Papakonstantinou K, Taxiarchou M, Diplas S (2016) Structural and physical characteristics of fine perlite expanded with a novel method in a vertical electric furnace. Mineral Process Extr Metall 125(2):71–80. https://doi.org/10.1080/03719553.2016.1156244

    Article  CAS  Google Scholar 

  87. Sahraeian R, Davachi SM, Heidari BS (2019) The effect of nanoperlite and its silane treatment on thermal properties and degradation of polypropylene/nanoperlite nanocomposite films. Compos B 162:103–111. https://doi.org/10.1016/j.compositesb.2018.10.093

    Article  CAS  Google Scholar 

  88. Çoban O, Bora MÖ, Kutluk T, Özkoç G (2018) Mechanical and thermal properties of volcanic particle filled PLA/PBAT composites. Polym Compos 39:E1500–E1511. https://doi.org/10.1002/pc.24393

    Article  CAS  Google Scholar 

  89. Dong S, Gauvin R (1993) Application of dynamic mechanical analysis for the study of the interfacial region in carbon Fiber/ Epoxy composite materials. Polym Compos 14(5):414–420. https://doi.org/10.1002/pc.750140508

    Article  CAS  Google Scholar 

  90. Li Y, Mai YW, Ye L (2005) Effects of fibre surface treatment on fracture-mechanical properties of sisal-fibre composites. Composite Interfaces 12(1–2):141–163. https://doi.org/10.1163/1568554053542151

    Article  Google Scholar 

  91. Sahraeian R, Esfandeh M, Hashemi SA (2013) Rheological, thermal and dynamic mechanical studies of the LDPE/Perlite nanocomposites. Polym Polym Compos 21(4):243–250. https://doi.org/10.1177/096739111302100406

    Article  CAS  Google Scholar 

  92. Tian H, Tagaya H (2007) Preparation, characterization and mechanical properties of the polylactide/perlite and the polylactide/montmorillonite composites. J Mater Sci 42:3244–3250. https://doi.org/10.1007/s10853-006-0230-5

    Article  CAS  Google Scholar 

  93. Tian H, Tagaya H (2008) Dynamic mechanical property and photochemical stability of perlite/PVA and OMMT/PVA nanocomposites. J Mater Sci 43:766–770. https://doi.org/10.1007/s10853-007-2127-3

    Article  CAS  Google Scholar 

  94. Çoban O, Bora MÖ, Kutluk T, Fidan S, Sinmazçelik T (2018) Heat treatment effect on thermal and thermomechanical properties of polyphenylene sulfide composites reinforced with silane-treated volcanic ash particles. Polym Compos 39:1612–1619. https://doi.org/10.1002/pc.24106

    Article  CAS  Google Scholar 

  95. Kurt Albayrak ZN, and Gencer G (2020) The usability of clay/pumice mixtures modified with biopolymer as an impermeable liner. KSCE J Civil Eng, pISSN 1226–7988, eISSN 1976–3808. doi: https://doi.org/10.1007/s12205-020-1053-7

  96. Sariisik A, Sariisik G (2012) New production process for insulation blocks composed of EPS and lightweight concrete containing pumice aggregate. Mater Struct 45:1345–1357. https://doi.org/10.1617/s11527-012-9836-z

    Article  Google Scholar 

  97. Bora MÖ, Çoban O, Kutluk T, Akagündüz E (2019) The use of volcanic particles in HDPE offers alternative filling material against CaCO3. Part II—scratch properties. Polym Compos 40:2564–2572. https://doi.org/10.1002/pc.25044

    Article  CAS  Google Scholar 

  98. Sahin AE, Cetin B, Sinmazcelik T (2021) Investigation of mechanical and tribological behaviour of expanded perlite particle reinforced polyphenylene sulphide. Proc IMechE Part L: J Mater: Design Appl 235:2356–2367. https://doi.org/10.1177/14644207211027342

    Article  CAS  Google Scholar 

  99. Singh T (2021) Tribological performance of volcanic rock (perlite)-filled phenolic-based brake friction composites. J King Saud Univ - Eng Sci, (In Press), 2021. https://doi.org/10.1016/j.jksues.2021.12.010

  100. Żmudka S, Budniak I, Kuciel S, Mikuła J (2009) Estimation of the possibilities of Using Vulcanic Tuf as thermoplastic polymer filler. Tech Trans 1:421–428

    Google Scholar 

  101. Mazur K, Kuciel S (2020) Composites based on recycled polystyrene waste with tuff microparticles. Tech Trans 115(4):195–203. https://doi.org/10.4467/2353737XCT.18.067.8379

    Article  Google Scholar 

  102. Alsaadi M, Erkliğ A (2018) Effect of perlite particle contents on delamination toughness of S-glass fiber reinforced epoxy matrix composites. Compos B Eng 141:182–190. https://doi.org/10.1016/j.compositesb.2017.12.059

    Article  CAS  Google Scholar 

  103. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B 39:933–961

    Article  Google Scholar 

  104. Bora MÖ, Çoban O, Kutluk T, Fidan S, Sinmazçelik T (2018) The influence of heat treatment process on mechanical properties of surface treated volcanic ash particles/polyphenylene sulfide composites. Polym Compos 39:1604–1611. https://doi.org/10.1002/pc.24105

    Article  CAS  Google Scholar 

  105. Mattausch H, Laske S, Cirar K, Flachberger H and Holzer C (2015) Influence of processing conditions on the morphology of expanded perlite/polypropylene composites. In: AIP Conference Proceedings 1593, 482-486. https://doi.org/10.1063/1.4873826

  106. Akin Öktem G, Tincer T (1993) A study on the yield stress of perlite-filled high-density polyethylenes. J Mater Sci 28:6313–6317. https://doi.org/10.1007/BF01352189

    Article  Google Scholar 

  107. Çoban O, Bora MÖ, Kutluk T (2018) Comparative study of volcanic particle and calcium carbonate filler materials in HDPE for thermal and mechanical properties. Polym Compos 39:E1900–E1907. https://doi.org/10.1002/pc.24883

    Article  CAS  Google Scholar 

  108. Aval ST, Davachi SM, Sahraeian R, Dadmohammadi Y, Heidari BS, Seyfi J, Hejazi I, Mosleh I, Abbaspourrad A (2020) Nanoperlite effect on thermal, rheological, surface and cellular properties of poly lactic acid/nanoperlite nanocomposites for multipurpose applications. Polym Testing 91:106779. https://doi.org/10.1016/j.polymertesting.2020.106779

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onur Çoban.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çoban, O., Yilmaz, T. Volcanic particle materials in polymer composites: a review. J Mater Sci 57, 16989–17020 (2022). https://doi.org/10.1007/s10853-022-07664-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07664-0

Navigation