Skip to main content
Log in

Hybrid Straw/Perlite Reinforced Natural Rubber Biocomposites

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The purpose of the work is to prepare and characterize hybrid fillers of cereal straw - perlite as well as to examine their impact on the functional properties of elastomeric biocomposites. Natural rubber was used as the polymer matrix, vulcanized with a sulfuric crosslinking system. The subject matter of the work included an interdisciplinary knowledge segment in the field of polymertechnology - hybrid biomaterials. The work investigated the effect of physical (mechanical) modification of lignocellulosic filler. The process of milling and homogenization of cereal straw with the addition of perlite was carried out in a planetary ball mill. The properties of biocomposites were examined in terms of two key aspects: The amount of hybrid filler and its ratio (cereal straw to natural mineral). The plate-like structure of natural minerals and the fibrous structure of cereal straw created a two-component filler, which influenced the properties of the produced biomaterials. A significant improvement in barrier, crosslinking density, hardness, mechanical and damping properties has been noted for systems containing hybrid fillers. Moreover, all vulcanizates proved to be resistant to the rmooxidative aging. Furthermore, the straw modificated with perlite formed a more complex structure in the composites, resulting in a stronger reinforcing effect, which was confirmed by dynamic-mechanical analysis (Payne effect).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Majeed K, Hassan A, Abu Bakar A. Barrier, biodegradation, and mechanical properties of (Rice husk)/(Montmorillonite) hybrid filler-filled low-density polyethylene nanocomposite films. Journal of Vinyl and Additive Technology, 2017, 23, 162–171.

    Article  Google Scholar 

  2. Faruk O, Bledzki A K, Fink H P, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 2012, 37, 1552–1596.

    Article  Google Scholar 

  3. Balla V K, Kate K H, Satyavolu J, Singh P, Tadimeti J G D. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering, 2019, 174, 106956.

    Article  Google Scholar 

  4. Faruk O, Ain M S. Biofiber reinforced polymer composites for structural applications. Developments in Fibre-Reinforced Polymer Composites for Civil Engineering, 2013, 2, 18–53.

    Article  Google Scholar 

  5. Mohanty A K, Misra M, Hinrichsen G. Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 2000, 276, 1–24.

    Article  Google Scholar 

  6. Joshi S V, Drzal L T, Mohanty A K, Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 2014, 35, 371–376.

    Article  Google Scholar 

  7. Al-Maadeed M A, Labidi S. Recycled polymers in natural fibre-reinforced polymer composites. Natural Fibre Composites: Materials, Processes and Properties, 2013, 4, 103–114.

    Google Scholar 

  8. Mohanty A K, Misra M, Drzal L T. Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 2002, 10, 19–26.

    Article  Google Scholar 

  9. Dicker M P M, Duckworth P F, Baker A B, Francois G, Hazzard M K, Weaver P M. Green composites: A review of material attributes and complementary applications. Composites Part A: Applied Science and Manufacturing, 2014, 56, 280–289.

    Article  Google Scholar 

  10. Eichhorn S J, Baillie C A, Zafeiropoulos N, Mwaikambo L Y, Ansell M P, Dufresne A, Entwistle K M, Herrera-Franco P, Canché-Escamilla G, Groom L H, Hughes M, Hill C A S, Rials T, Wild P M. Current international research into cellulosic fibres and composites. Journal of Materials Science, 2001, 36, 2107–2131.

    Article  Google Scholar 

  11. Koronis G, Silva A, Fontul M. Green composites: A review of adequate materials for automotive applications. Composites Part B: Engineering, 2013, 44, 120–127.

    Article  Google Scholar 

  12. Summerscales J, AmandeepS. Virk, Hall W, Dissanayake NPJ. A review of bast fibers and their composites. Part 1-Fibers as reinforcements. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1329–1335.

    Article  Google Scholar 

  13. Zini E, Scandola M. Green composites: An overview. Polymer Composites, 2011, 321905–321915.

    Google Scholar 

  14. Panthapulakkal S, Sain M. The use of wheat straw fibres as reinforcements in composites. Biofiber Reinforcements in Composite Materials, 2014, 14, 423–453.

    Google Scholar 

  15. Majeed K, Jawaid M, Hassan A, Abu Bakar A, Abdul Khalil H P S, Salema A A, Inuwa I M. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials & Design, 2013, 46, 391–410.

    Article  Google Scholar 

  16. Zainudin E S, Yan L H, Haniffah W H, Jawaid M, Alothman O Y. Effect of coir fiber loading on mechanical and morphological properties of oil palm fibers reinforced polypropylene composites. Polymer Composites, 2014, 35, 1418–1425.

    Article  Google Scholar 

  17. Essabir H, Boujmal R, Bensalah M O, Rodrigue D, Bouhfid R, Qaiss A E K. Mechanical and thermal properties of hybrid composites: Oil-palm fiber/clay reinforced high density polyethylene. Mechanics of Materials, 2016, 98, 36–43.

    Article  Google Scholar 

  18. Baheti V, Abbasi R, Militky J. Ball milling of jute fibre wastes to prepare nanocellulose. World Journal of Engineering, 2012, 9, 45–50.

    Article  Google Scholar 

  19. Hajiha H, Sain M. The use of sugarcane bagasse fibres as reinforcements in composites. Biofiber Reinforcements in Composite Materials, 2015, 17, 525–549.

    Article  Google Scholar 

  20. Arifuzzaman M, Kim H S. Novel mechanical behaviour of perlite/sodium silicate composites. Construction and Building Materials, 2015, 93, 230–240.

    Article  Google Scholar 

  21. Oktay H, Yumrutaş R, Akpolat A. Mechanical and thermophysical properties of lightweight aggregate concretes. Construction and Building Materials, 2015, 96, 217–225.

    Article  Google Scholar 

  22. Celik S, Family R, Menguc M P. Analysis of perlite and pumice based building insulation materials. Journal of Building Engineering, 2016, 6, 105–111.

    Article  Google Scholar 

  23. Maaloufa Y, Mounir S, Khabbazi A, Kettar J, Khaldoun A. Thermal characterization of materials based on clay and granular: Cork or expanded perlite. Energy Procedia, 2015, 74, 1150–1161.

    Article  Google Scholar 

  24. Halimi Y H. Development and characterization of a composite material reinforced by plastic waste: Application in the construction sector. International Journal of GEOMATE, 2017, 13, 172–178.

    Article  Google Scholar 

  25. Mattausch H, Laske S, Cirar K, Flachberger H, Holzer C. Influence of processing conditions on the morphology of expanded perlite/polypropylene composites. AIP Conference Proceedings, 2014, 1593, 482–486.

    Article  Google Scholar 

  26. Kaczmarek H, Chylihska M, Klimiec E, Królikowski B, Sionkowski G, Machnik M. Piezo-electrets from polypropylene composites doped with mineral fillers. Pure and Applied Chemistry, 2019, 91, 967–982.

    Article  Google Scholar 

  27. Pinto J R A, Sanches N B, Diniz M F, Santos R S, De Oliveira J I S, Dutra R D C L. Expanded perlite/cork fillers applied to aerospace insulation material. Anais da Academia Brasileira de Ciências, 2018, 90, 3197–3206.

    Article  Google Scholar 

  28. Sokołowska J J, Woyciechowski P P, Łukowski P, Kida K. Effect of perlite waste powder on chemical resistance of polymer concrete composites. Advanced Materials Research, 2015, 1129, 516–522.

    Article  Google Scholar 

  29. Li T T, Chuang Y C, Huang C H, Lou C W, Lin J H. Applying vermiculite and perlite fillers to sound-absorbing/thermal-insulating resilient PU foam composites. Fibers and Polymers, 2015, 16, 691–698.

    Article  Google Scholar 

  30. Bulut M, Erklig A, Dogan N F. On adhesive properties of perlite and sewage sludge ash with epoxy resin bonded single-strap repairs. Materials Research Express, 2017, 4, 85302.

    Article  Google Scholar 

  31. Masłowski M, Miedzianowska J, Strzelec K. Natural rubber biocomposites containing corn, barley and wheat straw. Polymer Testing, 2017, 63, 84–91.

    Article  Google Scholar 

  32. Masłowski M, Miedzianowska J, Strąkowska A, Strzelec K, Szynkowska M I. The use of rye, oat and triticale straw as fillers of natural rubber composites. Polymer Bulletin, 2018, 75, 4607–4626.

    Article  Google Scholar 

  33. Masłowski M, Miedzianowska J, Strzelec K. Silanized cereal straw as a novel, functional filler of natural rubber biocomposites. Cellulose, 2019, 26, 1025–1040.

    Article  Google Scholar 

  34. Masłowski M, Miedzianowska J, Strzelec K. Natural rubber composites filled with cereals straw modified with acetic and maleic anhydride: Preparation and properties. Journal of Polymers and the Environment, 2018, 26, 4141–4157.

    Article  Google Scholar 

  35. Miedzianowska J, Masłowski M, Strzelec K. Thermoplastic elastomer biocomposites filled with cereal straw fibers obtained with different processing methods-Preparation and properties. Polymers, 2019, 11, 641.

    Article  Google Scholar 

  36. Masłowski M, Miedzianowska J, Strzelec K. Natural rubber composites filled with crop residues as an alternative to vulcanizates with common fillers. Polymers, 2019, 11, 972.

    Article  Google Scholar 

  37. Flory P J, Rehner J. Statistical mechanics of cross-Linked polymer networks I. Rubberlike elasticity. The Journal of Chemical Physics, 1943, 11, 512–520.

    Article  Google Scholar 

  38. Roovers J, Toporowski P M. Characteristic ratio and plateau modulus of 1,2-polybutadiene. A comparison with other rubbers. Rubber Chemistry and Technology, 1990, 63, 734–746.

    Article  Google Scholar 

  39. Ahmed K, Nizami S S, Raza N Z, Habib F. The effect of silica on the properties of marble sludge filled hybrid natural rubber composites. Journal of King Saud University, 2013, 25, 331–339.

    Article  Google Scholar 

  40. Masek A, Zaborski M, Kosmalska A, Chrzescijanska E. Eco-friendly elastomeric composites containing Sencha and Gun Powder green tea extracts. Comptes Rendus Chimie, 2012, 15, 331–335.

    Article  Google Scholar 

  41. Strąkowska A, Kosmalska A, Masłowski M, Szmechtyk T, Strzelec K, Zaborski M. POSS as promoters of self-healing process in silicone composites. Polymer Bulletin, 2018, 76, 3387–3402.

    Article  Google Scholar 

  42. Summerell B A, Burgess LW. Decomposition and chemical composition of cereal straw. Soil Biology and Biochemistry, 1989, 21, 551–559.

    Article  Google Scholar 

  43. Abdullah S, Yusup S, Ahmad M, Ramli A, Ismail L, Preparation A S. Thermogravimetry study on pyrolysis of various lignocellulosic biomass for potential hydrogen production. World Academy of Science, Engineering and Technology, 2010, 72, 129–133.

    Google Scholar 

  44. Wyasu G, Gimba C E, Agbaji E B, Ndukwe G I. Thermo-gravimetry(TGA) and DSC of thermal analysis techniques in production of active carbon from lignocellulosic materials. Advances in Applied Science Research, 2016, 7, 109–115.

    Google Scholar 

  45. Pichór W, Janiec A. Thermal stability of expanded perlite modified by mullite. Ceramics International, 2009, 35, 527–530.

    Article  Google Scholar 

  46. Payne A R. The dynamic properties of carbon black loaded natural rubber vulcanizates. Journal of Applied Polymer Science, 1962, 6, 368–372.

    Article  Google Scholar 

  47. Payne A R, Whittaker R E. Low strain dynamic properties of filled rubbers. Rubber Rubber Chemistry and Technology, 1971, 44, 440–478.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Science Centre, Poland (PRELUDIUM no. 2018/31/N/ST8/00802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Masłowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masłowski, M., Miedzianowska, J. & Strzelec, K. Hybrid Straw/Perlite Reinforced Natural Rubber Biocomposites. J Bionic Eng 16, 1127–1142 (2019). https://doi.org/10.1007/s42235-019-0124-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-019-0124-2

Keywords

Navigation