Skip to main content

Multicomponent Polymer Composite/Nanocomposite Systems Using Polymer Matrices from Sustainable Renewable Sources

  • Chapter
  • First Online:
Eco-friendly Polymer Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 75))

Abstract

Green composites are increasingly promoted for sustainable development considering the growing awareness of environmental and waste management issues. Recent advances in natural fiber development, and nanocomposites research area generate significant opportunities for obtaining materials from renewable resources with improved properties and suitable for different applications. Green composites are made from both renewable resource-based polymers (biopolymers) and bio-fillers (including nano-type fillers), with a positive environmental impact. Green composites based on biopolymer matrix (plasticized starch) have been obtained by combination with various bio-fillers (beech wood sawdust, fir tree needles, beech wood lignin). Their structure and properties were further investigated through Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and TG/DTG/DTA simultaneous thermal analysis methods, as well as by water uptake and opacity measurements. The results are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Khalil HPS, Bhat AH, Irena Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87:963–979

    CAS  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    CAS  Google Scholar 

  • AL-Oqla FM, Sapuan SM (2014) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354

    CAS  Google Scholar 

  • Abraham E, Deepa B, Pothan LA, Cintil J, Thomas S, John MJ, Anandjiwala R, Narine SS (2013) Environmental friendly method for the extraction of coir fibre and isolation of nanofiber. Carbohyd Polym 92:1477–1483

    CAS  Google Scholar 

  • Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohyd Polym 86:1468–1475

    CAS  Google Scholar 

  • Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Design 47:424–442

    CAS  Google Scholar 

  • Averous L, Pollet E (2014) Nanobiocomposites based on plasticized starch, Chapter 8, Starch polymers from genetic engineering to green applications, Edited by P. Halley and L. Averous, Elsevier, pp 211–239

    Google Scholar 

  • Barone JR (2009) Lignocellulosic fiber-reinforced keratin polymer composites. J Polym Environ 17:143–151

    CAS  Google Scholar 

  • Bettini SHP, Bonse BC, Melo EA, Munoz PAR (2010) Effect of sawdust surface treatment and compatibilizer addition on mechanical behavior, morphology, and moisture uptake of polypropylene/sawdust composites. Polym Eng Sci 50:978–985

    CAS  Google Scholar 

  • Blaker JJ, Lee KY, Bismarck A (2011) Hierarchical composites made entirely from renewable resources. J Biobased Mater Bioenergy 5:1–16

    CAS  Google Scholar 

  • Bledzki A, Jaszkiewicz A (2010) Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibers-a comparative study to PP. Compos Sci Technol 70:1687–1696

    CAS  Google Scholar 

  • Bledzki AK, Mamun AA, Volk J (2010) Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Compos Sci Technol 70:840–846

    CAS  Google Scholar 

  • Bodîrlău R, Spiridon I, Teacă CA (2007) Chemical investigation of wood tree species in temperate forest in east-northern Romania. BioResources 2:41–57

    Google Scholar 

  • Bodîrlău R, Teacă CA, Spiridon I (2009) Preparation and characterization of composites comprising modified hardwood and wood polymers/poly(vinyl chloride). BioResources 4:1285–1304

    Google Scholar 

  • Bodîrlău R, Teacă CA, Spiridon I (2014) Green composites comprising thermoplastic corn starch and various cellulose-based fillers. BioResources 9:39–53

    Google Scholar 

  • Cai X, Riedl B, Zhang S, Wan H (2008) The impact of the nature of nanofillers on the performance of wood polymer nanocomposites. Compos A 39:727–737

    Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107

    CAS  Google Scholar 

  • Chang PR, Jian RJ, Yu JG, Ma XF (2010) Starch-based composites reinforced with novel chitin nanoparticles. Carbohyd Polym 80:420–425

    CAS  Google Scholar 

  • Chang PR, Wu D, Anderson DP, Ma X (2012) Nanocomposites based on plasticized starch and rectorite clay: structure and properties. Carbohyd Polym 89:687–693

    CAS  Google Scholar 

  • Chauhan M, Gupta M, Singh B, Bhattacharyya SK, Singh AK, Gupta VK (2013) Pretreatment of pine needles/wood particles and their composites with isocyanate prepolymer adhesive. Polym Eng Sci 53:1740–1750

    CAS  Google Scholar 

  • Chauhan M, Gupta M, Singh B, Singh AK, Gupta VK (2012) Pine needle/isocyanate composites: dimensional stability, biological resistance, flammability, and thermo-acoustic characteristics. Polym Compos 33:324–335

    CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011a) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442

    CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011b) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohyd Polym 83:1804–1811

    CAS  Google Scholar 

  • Cherian BM, Leao AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohyd Polym 81:720–725

    CAS  Google Scholar 

  • Chung YL, Hsi-Mei L (2007) Properties of cast films made of HCl—methanol modified corn starch. Starch/Stärke 59:583–592

    CAS  Google Scholar 

  • Csizmadia R, Faludi G, Renner K, Móczó J, Pukánszky B (2013) PLA/wood biocomposites: improving composite strength by chemical treatment of the fibers. Compos A 53:46–53

    CAS  Google Scholar 

  • Dai H, Chang PR, Geng F, Yu J, Ma X (2010a) Preparation and properties of starch-based film using N, N-bis-(2-hydroxyethyl)formamide as a new plasticizer. Carbohyd Polym 79:306–311

    CAS  Google Scholar 

  • Dai H, Chang PR, Yu J, Geng F, Ma X (2010b) N-(2-hydroxypropyl)formamide and N-(2-hydroxyethyl)-N-methylformamide as two new plasticizers for thermoplastic starch. Carbohyd Polym 80:139–144

    CAS  Google Scholar 

  • Dobircau L, Sreekumar PA, Saiah R, Leblanc N, Terrié C, Gattin R, Saiter JM (2009) Wheat flour thermoplastic matrix reinforced by waste cotton fibre: agro-green-composites. Compos A 40:329–334

    Google Scholar 

  • Dong C, Parsons D, Davies IJ (2014) Tensile strength of pine needles and their feasibility as reinforcement in composite materials. J Mater Sci 49:8057–8062

    Google Scholar 

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315

    CAS  Google Scholar 

  • Fang JM, Fowler PA, Tomkinson J, Hill CAS (2002) The preparation and characterization of a series of chemically modified potato starches. Carbohyd Polym 47:245–252

    CAS  Google Scholar 

  • Faruk O, Bledzki AK, Fink HP, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26

    CAS  Google Scholar 

  • Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000-2010. Prog Polym Sci 37:1552–1596

    CAS  Google Scholar 

  • Fernandes EM, Mano JF, Reis RL (2013a) Hybrid cork–polymer composites containing sisal fibre: morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction. Compos Struct 105:153–162

    Google Scholar 

  • Fernandes EM, Correlo VM, Mano JF, Reis RL (2013b) Novel cork–polymer composites reinforced with short natural coconut fibres: effect of fibre loading and coupling agent addition. Compos Sci Technol 78:56–62

    CAS  Google Scholar 

  • Fujisawa S, Ikeuchi T, Takeuchi M, Saito T, Isogai A (2012) Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromolecules 13:2188–2194

    CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    CAS  Google Scholar 

  • Gao W, Dong H, Hou H, Zhang H (2012) Effects of clays with various hydrophilicities on properties of starch–clay nanocomposites by film blowing. Carbohyd Polym 88:321–328

    CAS  Google Scholar 

  • Gironès J, López JP, Mutjé P, Carvalho AJF, Curvelo AAS, Vilaseca F (2012) Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Compos Sci Technol 72:858–863

    Google Scholar 

  • Gregorova A, Hrabalova M, Kovalcik R, Wimmer R (2011) Surface modification of spruce wood flour and effects on the dynamic fragility of PLA/wood composites. Polym Eng Sci 51:143–150

    CAS  Google Scholar 

  • Gupta M, Chauhan M, Khatoon N, Singh B (2010) Composite boards from isocyanate bonded pine needles. J Appl Polym Sci 118:3477–3489

    CAS  Google Scholar 

  • Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9:1974–1980

    CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    CAS  Google Scholar 

  • Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49:950–956

    CAS  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980

    Google Scholar 

  • Huber T, Müssig J, Curnow O, Pang S, Bickerton S, Staiger MP (2012) A critical review of all-cellulose composites. J Mater Sci 47:1171–1186

    CAS  Google Scholar 

  • Ifuku S, Morooka S, Nakagaito AN, Morimoto M, Saimoto H (2011) Preparation and characterization of optically transparent chitin nanofiber/(meth)acrylic resin composites. Green Chem 13:1708–1711

    CAS  Google Scholar 

  • Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459

    CAS  Google Scholar 

  • Janardhnan S, Sain MM (2006) Isolation of cellulose microfibrils–an enzymatic approach. BioResources 1:176–188

    Google Scholar 

  • Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4:626–639

    CAS  Google Scholar 

  • Kalia S, Avérous L, Njuguna J, Dufresne A, Cherian BM (2011) Natural fibers, bio- and nanocomposites. Int J Polymer Sci http://dx.doi.org/10.1155/2011/735932; Article ID 735932

  • Kaewtatip K, Thongmee J (2012) Studies on the structure and properties of thermoplastic starch/luffa fiber composites. Mater Design 40:314–318

    CAS  Google Scholar 

  • Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohyd Polym 82:337–345

    CAS  Google Scholar 

  • Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohyd Res 346:76–85

    CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Tom Lindström, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    CAS  Google Scholar 

  • Klemm D, Schumann D, Kramer F, Heßler N, Koth D, Sultanova B (2009) Nanocellulose materials—different cellulose, different functionality. Macromol Symp 280:60–71

    CAS  Google Scholar 

  • Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromolecules 14:1160–1165

    CAS  Google Scholar 

  • Kord B (2011) Nanofiller reinforcement effects on the thermal, dynamic mechanical and morphological behavior of HDPE/rice husk flour composites. BioResources 6:1351–1358

    CAS  Google Scholar 

  • Kumar AP, Singh RP (2008) Biocomposites of cellulose reinforced starch: Improvement of properties by photo-induced crosslinking. Bioresour Technol 99:8803–8809

    CAS  Google Scholar 

  • LeCorre D, Vahanian E, Dufresne A, Bras J (2012) Enzymatic pretreatment for preparing starch nanocrystals. Biomacromolecules 13:132–137

    CAS  Google Scholar 

  • LeCorre D, Bras J, Dufresne A (2011) Evidence of micro- and nanoscaled particles during starch nanocrystals preparation and their isolation. Biomacromolecules 12:3039–3046

    CAS  Google Scholar 

  • Lee KY, Tang M, Williams CK, Bismarck A (2012a) Carbohydrate derived copoly(lactide) as the compatibilizer for bacterial cellulose reinforced polylactide nanocomposites. Compos Sci Technol 72:1646–1650

    CAS  Google Scholar 

  • Lee KY, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32

    CAS  Google Scholar 

  • Lee KY, Ho KKC, Schlufter K, Bismarck A (2012b) Hierarchical composites reinforced with robust short sisal fibre preforms utilising bacterial cellulose as binder. Compos Sci Technol 72:1479–1486

    CAS  Google Scholar 

  • Lee KY, Bharadia P, Blaker JJ, Bismarck A (2012c) Short sisal fibre reinforced bacterial cellulose polylactide nanocomposites using hairy sisal fibres as reinforcement. Compos A 43:2065–2074

    CAS  Google Scholar 

  • Lei Y, Wu Q (2010) Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate). Bioresour Technol 101:3665–3671

    CAS  Google Scholar 

  • Liu D, Zhong T, Chang PR, Li K, Wu Q (2010) Starch composites reinforced by bamboo cellulosic crystals. Bioresour Technol 101:2529–2536

    CAS  Google Scholar 

  • Liu H, Xie F, Yu L, Chen L, Li L (2009) Thermal processing of starch-based polymers. Prog Polym Sci 34:1348–1368

    CAS  Google Scholar 

  • Ma X, Chang PR, Yu J (2008a) Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohyd Polym 72:369–375

    CAS  Google Scholar 

  • Ma XF, Jian RJ, Chang PR, Yu JG (2008b) Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules 9:3314–3320

    CAS  Google Scholar 

  • Majdzadeh-Ardakani K, Navarchian AH, Sadeghi F (2010) Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohyd Polym 79:547–554

    CAS  Google Scholar 

  • Majeed K, Jawaid M, Hassan A, Abu Bakar A, Abdul Khalil HPS, Salema AA, Inuwa I (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Design 46:391–410

    CAS  Google Scholar 

  • Martins IMG, Magina SP, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2009) New biocomposites based on thermoplastic starch and bacterial cellulose. Compos Sci Technol 69:2163–2168

    CAS  Google Scholar 

  • JD Megiatto Jr, Ramires EC, Frollini E (2010) Phenolic matrices and sisal fibers modified with hydroxy terminated polybutadiene rubber: impact strength, water absorption, and morphological aspects of thermosets and composites. Ind Crop Prod 31:178–184

    Google Scholar 

  • Moran JI, Vazquez A, Cyras VP (2013) Bio-nanocomposites based on derivatized potato starch and cellulose, preparation and characterization. J Mater Sci 48:7196–7203

    CAS  Google Scholar 

  • Moran JI, Alvarez VA, Cyras VP, Vazquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

    CAS  Google Scholar 

  • Mueangta S, Hanchana A (2013) Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites. Mater Design 47:309–315

    Google Scholar 

  • Müller P, Renner K, Móczó J, Fekete E, Pukánszky B (2014) Thermoplastic starch/wood composites: interfacial interactions and functional properties. Carbohyd Polym 102:821–829

    Google Scholar 

  • Nair SS, Hurley DC, Wang S, Young TM (2013) Nanoscale characterization of interphase properties in maleated polypropylene-treated natural fiber-reinforced polymer composites. Polym Eng Sci 53:888–896

    CAS  Google Scholar 

  • Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) Characterization of cellulose nanofibrillation by microgrinding. J Nanopart Res 16:2349. doi:10.1007/s11051-014-2349-7

    Google Scholar 

  • Ojijo V, Ray SS (2013) Processing strategies in bionanocomposites. Prog Polym Sci 38:1543–1589

    CAS  Google Scholar 

  • Pandey KK (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71:1969–1975

    CAS  Google Scholar 

  • Pandey JK, Ahn SH, Lee CS, Mohanty AK, Misra M (2010) Recent advances in the application of natural fiber based composites. Macromol Mater Eng 295:975–989

    CAS  Google Scholar 

  • Pandey JK, Chu WS, Kim CS, Lee CS, Ahn SH (2009) Bio-nano reinforcement of environmentally degradable polymer matrix by cellulose whiskers from grass. Compos B 40:676–680

    Google Scholar 

  • Pandey JK, Singh RP (2005) Green nanocomposites from renewable resources: effect of plasticizer on the structure and material properties of clay-filled starch. Starch/Stärke 57:8–15

    CAS  Google Scholar 

  • Prachayawarakorn J, Ruttanabus P, Boonsom P (2011) Effect of cotton fiber contents and lengths on properties of thermoplastic starch composites prepared from rice and waxy rice starches. J Polym Environ 19:274–282

    CAS  Google Scholar 

  • Qamhia II, Sabo RC, Elhajjar RF (2014) Static and dynamic characterization of cellulose nanofibril scaffold-based composites. BioResources 9:381–392

    CAS  Google Scholar 

  • Qiao X, Tang Z, Sun K (2011) Plasticization of corn starch by polyol mixtures. Carbohyd Polym 83:659–664

    CAS  Google Scholar 

  • Ramires EC, Megiatto JD Jr, Gardrat C, Castellan A, Frollini E (2010) Biobased composites from glyoxal-phenolic resins and sisal fibers. Bioresour Technol 101:1998–2006

    CAS  Google Scholar 

  • Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689

    CAS  Google Scholar 

  • Rojas OJ, Montero GA, Habibi Y (2009) Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. J Appl Polym Sci 113:927–935

    CAS  Google Scholar 

  • Rowell RM (2012a) Chemical modification of wood to produce stable and durable composites. Cell Chem Technol 46:443–448

    CAS  Google Scholar 

  • Rowell RM (ed) (2012b) Handbook of wood chemistry and wood composites, Second Edition, CRC Press, Boca Raton, USA, p 703

    Google Scholar 

  • Sailaja RRN, Deepthi MV (2010) Mechanical and thermal properties of compatibilized composites of polyethylene and esterified lignin. Mater Design 31:4369–4379

    CAS  Google Scholar 

  • Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers-an overview. Prog Polym Sci 34:982–1021

    CAS  Google Scholar 

  • Savadekar NR, Mhaske ST (2012) Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohyd Polym 89:146–151

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2008a) Saccaharum cilliare fiber reinforced polymer composites. E-J Chem 5:782–791

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2008b) Effect of fibre loading on urea-formaldehyde matrix based green composites. Iran Polym J 17:861–873

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2008c) Synthesis and characterization of pine needles reinforced RF matrix based biocomposites. J Chem 5:1055–1062

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2008d) Fabrication of Hibiscus Sabdariffa fibre reinforced polymer composites. Iran Polym J 17:541–553

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009a) Study of mechanical properties of urea-formaldehyde thermosets reinforced by Pine needle powder. BioResources 4:292–308

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009b) Grewia optiva fiber reinforced novel, low cost polymer composites. J Chem 6:71–76

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009c) Synthesis, characterization and analysis of Hibiscus Sabdariffa fibre reinforced polymer matrix based composites. Polym Polym Compos 17:189–194

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2010a) Synthesis and characterization of short Grewia optiva fiber based polymer composites. Polym Compos 31:459–470

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2010b) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Charact 15:87–97

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2010c) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Compos 29:700–709

    CAS  Google Scholar 

  • Singha AS, Thakur VK, Mehta IK (2010) Renewable resource based green polymer composites: analysis and characterization. Int J Polym Anal Charact 15:137–146

    Google Scholar 

  • Singha AS, Thakur VK, Mehta IK, Shama A, Khanna AJ, Rana RK, Rana AK (2009a) Surface-modified Hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. Int J Polym Anal Charact 14:695–711

    CAS  Google Scholar 

  • Singha AS, Thakur VK, Mishra BN (2009b) Study of grewia optiva fiber reinforced urea-formaldehyde composites. J Polym Mater 26:81–90

    CAS  Google Scholar 

  • Soykeabkaew N, Laosat N, Ngaokla A, Yodsuwan N, Tunkasiri T (2012) Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites. Compos Sci Technol 72:845–852

    CAS  Google Scholar 

  • Sreekumar PA, Gopalakrishnan P, Leblanc N, Saiter JM (2010) Effect of glycerol and short sisal fibers on the viscoelastic behavior of wheat flour based thermoplastic. Compos A Appl Sci Manuf 41:991–996

    Google Scholar 

  • Stark NM, Gardner DJ (2008) Outdoor durability of wood-polymer composites (Chapter 7). In: Wood-polymer composites Edited by Oksman Niska K, Sain M, Woodhead Publishing Limited Cambridge, England and CRC Press LLC, Boca Raton USA, pp. 142–165

    Google Scholar 

  • Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48:11211–11219

    CAS  Google Scholar 

  • Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohyd Polym 84:1033–1038

    CAS  Google Scholar 

  • Teacă CA, Bodîrlău R, Roşu D, Roşu L, Varganici CD (2014) Multicomponent bio-based polymer systems comprising starch and wood polymers—structure and thermal behavior. J Biobased Mater Bioenergy 8:253–260

    Google Scholar 

  • Thakur VK, Singha AS (2010) Mechanical and water absorption properties of natural fibers/polymer biocomposites. Polym Plast Technol Eng 49:670–694

    Google Scholar 

  • Thakur VK, Singha AS (2011) Physico-chemical and mechanical behavior of cellulosic pine needles based biocomposites. Int J Polym Anal Charact 16:390–398

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Misra BN (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122:532–544

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012a) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012b) In-air graft copolymerization of ethyl acrylate onto natural cellulosic polymers. Int J Polym Anal Charact 17:48–60

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012c) Graft copolymerization of methyl acrylate onto cellulosic biofibers: synthesis, characterization and applications. J Polym Environ 20:164–174

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012d) Surface modification of natural polymers to impart low water absorbency. Int J Polym Anal Charact 17:133–143

    CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014a) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohyd Polym 109:102–117

    CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014b) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652

    CAS  Google Scholar 

  • Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014a) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092

    CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2014b) Review: raw natural fiber–based polymer composites. Int J Polym Anal Charact 19:256–271

    CAS  Google Scholar 

  • Thakur VK, Vennerberg D, Kessler MR (2014c) Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl Mater Interfaces 6:9349–9356

    CAS  Google Scholar 

  • Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014d) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684

    CAS  Google Scholar 

  • Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014e) PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv 4:18240–18249

    CAS  Google Scholar 

  • Thakur VK, Grewell D, Thunga M, Kessler MR (2014f) Novel composites from eco-friendly soy flour/SBS triblock copolymer. Macromol Mater Eng 299:953–958

    CAS  Google Scholar 

  • Vermeylen R, Derycke V, Delcour JA, Goderis B, Reynaers H, Koch MHJ (2006) Structural transformations during gelatinization of starches in limited water: combined wide- and small-angle x-ray scattering study. Biomacromolecules 7:1231–1238

    CAS  Google Scholar 

  • Wu Y, Wang S, Zhou D, Zhang Y, Wang X, Yang R (2013) Biodegradable poly(vinyl alcohol) nanocomposites made from rice straw fibrils: mechanical and thermal properties. J Compos Mater 47:1449–1459

    CAS  Google Scholar 

  • Xie F, Pollet E, Halley PJ, Averous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38:1590–1628

    CAS  Google Scholar 

  • Yang HS, Kim DJ, Kim HJ (2003) Rice straw-wood particle composite for sound absorbing wooden construction materials. Bioresour Technol 86:117–121

    CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    CAS  Google Scholar 

  • Zeppa C, Gouanvé F, Espuche E (2009) Effect of a plasticizer on the structure of biodegradable starch/clay nanocomposites: thermal, water-sorption, and oxygen-barrier properties. J Appl Polym Sci 112:2044–2056

    CAS  Google Scholar 

  • Zhang JS, Chang PR, Wu Y, Yu JG, Ma XF (2008) Aliphatic amidediol and glycerol as a mixed plasticizer for the preparation of thermoplastic starch. Starch/Stärke 60:617–623

    CAS  Google Scholar 

  • Zhang QX, Yu ZZ, Xie XL, Naito K, Kagawa Y (2007) Preparation and crystalline morphology of biodegradable starch/clay nanocomposites. Polymer 48:7193–7200

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI––Project number PN-II-ID-PCE-2011-3-0187 (We gratefully acknowledge the project director, Dr. Dan Roşu, for overall guidance and fruitful discussion on the experimental data presented in this chapter).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen-Alice Teacă .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Teacă, CA., Bodîrlău, R. (2015). Multicomponent Polymer Composite/Nanocomposite Systems Using Polymer Matrices from Sustainable Renewable Sources. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 75. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2470-9_15

Download citation

Publish with us

Policies and ethics