Skip to main content
Log in

Fe2V4O13 photoanode material: an interesting approach to non-enzymatic glucose oxidation

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The use of non-enzymatic material for the electrooxidation reaction of glucose is still a challenge to be overcome since these materials must have high sensitivity to glucose, high chemical stability and, if possible, be obtained quickly and with a low-cost process. In this context, iron vanadate (Fe2V4O13) was successfully synthesized using the easy and low-cost Successive Ionic Layer Adsorption and Reaction process and used as an interesting non-enzymatic photoanode material approach for the photoelectrochemical oxidation reaction of glucose. From the X-ray diffraction and Raman measurements, it was possible to observe that the monoclinic crystalline phase Fe2V4O13 was formed at 500 °C, without any secondary phases. The electrochemical characterization, performed by linear sweep voltammetry (LSV), chronoamperometry and electrochemical impedance spectroscopy techniques, under light condition, showed the remarkable photoelectrochemical activity of the FTO/Fe2V4O13 electrode, such as a high photocurrent density at + 0.6 V vs. Ag/AgCl (0.2 mA cm−2); good reproducibility under transient light condition; low charge transfer resistance; and flat band potential consistent with the LSV and typical value of this material (+ 0.45 V). The performance of the electrode as non-enzymatic glucose interaction, carried out by chronoamperometry technique, showed a remarkable performance in the photoelectrooxidation reaction of glucose, with linear behavior (R2 = 0.9975) of the analytical curve (glucose concentration from 0 to 10 mmol L−1), excellent reproducibility, a slight loss in photoelectrochemical signal after five successive reading cycles, good sensitivity (0.370 μA mM−1 cm−2) and limit of detection (52 µmol L–1). Besides, the analysis of interference species showed good electrode selectivity.

Graphical abstract

Fe2V2O13 photoelectrode obtained by the Successive Ionic Layer Adsorption and Reaction (SILAR) process, and its use for glucose photoelectrocatalytic oxidation reaction

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Walter MG, Warren EL, McKone JR et al (2010) Solar water splitting cells. Chem Rev 110:6446–6473. https://doi.org/10.1021/cr1002326

    Article  CAS  Google Scholar 

  2. Liu J, Li J, Li Y et al (2020) Photoelectrochemical water splitting coupled with degradation of organic pollutants enhanced by surface and interface engineering of BiVO4 photoanode. Appl Catal B Environ 278:119268. https://doi.org/10.1016/j.apcatb.2020.119268

    Article  CAS  Google Scholar 

  3. Tang D, Rettie AJE, Mabayoje O et al (2016) Facile growth of porous Fe2V4O13 films for photoelectrochemical water oxidation. J Mater Chem A 4:3034–3042. https://doi.org/10.1039/C5TA07877F

    Article  CAS  Google Scholar 

  4. Lewerenz HJ (1997) Surface scientific aspects in semiconductor electrochemistry. Chem Soc Rev 26:239. https://doi.org/10.1039/cs9972600239

    Article  CAS  Google Scholar 

  5. Bariana M, Dwivedi P, Ranjitkar S et al (2017) Biological response of human suture mesenchymal cells to titania nanotube-based implants for advanced craniosynostosis therapy. Colloids Surf B Biointerfaces 150:59–67. https://doi.org/10.1016/j.colsurfb.2016.11.019

    Article  CAS  Google Scholar 

  6. Divyapriya G, Singh S, Martínez-Huitle CA et al (2021) Treatment of real wastewater by photoelectrochemical methods: an overview. Chemosphere 276:130188. https://doi.org/10.1016/j.chemosphere.2021.130188

    Article  CAS  Google Scholar 

  7. Wang Y, He D, Chen H, Wang D (2019) Catalysts in electro-, photo- and photoelectrocatalytic CO2 reduction reactions. J Photochem Photobiol C Photochem Rev 40:117–149. https://doi.org/10.1016/j.jphotochemrev.2019.02.002

    Article  CAS  Google Scholar 

  8. GuangLi W, JingJuan X, HongYuan C (2009) Progress in the studies of photoelectrochemical sensors. Sci China Ser B Chem 52:1789–1800

    Article  Google Scholar 

  9. Xu H, Shang H, Liu Q et al (2021) Dual mode electrochemical-photoelectrochemical sensing platform for hydrogen sulfide detection based on the inhibition effect of titanium dioxide/bismuth tungstate/silver heterojunction. J Colloid Interface Sci 581:323–333. https://doi.org/10.1016/j.jcis.2020.07.120

    Article  CAS  Google Scholar 

  10. Neto NFA, de Jesus Pereira AL, Leite DMG et al (2021) Evaluation of ITO/TiO2/Co3O4 as a non-enzymatic heterojunction electrode to glucose electrooxidation. Ionics (Kiel) 27:1597–1609. https://doi.org/10.1007/s11581-021-03933-1

    Article  CAS  Google Scholar 

  11. Wang S, Li S, Wang W et al (2019) A non-enzymatic photoelectrochemical glucose sensor based on BiVO4 electrode under visible light. Sens Actuators B Chem 291:34–41. https://doi.org/10.1016/j.snb.2019.04.057

    Article  CAS  Google Scholar 

  12. Liu H, Xu G, Wang J et al (2014) Photoelectrochemical properties of TiO2 nanotube arrays modified with BiOCl nanosheets. Electrochim Acta 130:213–221. https://doi.org/10.1016/j.electacta.2014.03.005

    Article  CAS  Google Scholar 

  13. Tryk D, Fujishima A, Honda K (2000) Recent topics in photoelectrochemistry: achievements and future prospects. Electrochim Acta 45:2363–2376. https://doi.org/10.1016/S0013-4686(00)00337-6

    Article  CAS  Google Scholar 

  14. Gouda A, Liu T, Byers JC et al (2021) Best practices in photoelectrochemistry. J Power Sources 482:228958. https://doi.org/10.1016/j.jpowsour.2020.228958

    Article  CAS  Google Scholar 

  15. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344. https://doi.org/10.1038/35104607

    Article  Google Scholar 

  16. Si P, Huang Y, Wang T, Ma J (2013) Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv 3:3487. https://doi.org/10.1039/c2ra22360k

    Article  CAS  Google Scholar 

  17. Tsai T-W, Heckert G, Neves LF et al (2009) Adsorption of glucose oxidase onto single-walled carbon nanotubes and its application in layer-by-layer biosensors. Anal Chem 81:7917–7925. https://doi.org/10.1021/ac900650r

    Article  CAS  Google Scholar 

  18. Cao L, Wang P, Chen L et al (2019) A photoelectrochemical glucose sensor based on gold nanoparticles as a mimic enzyme of glucose oxidase. RSC Adv 9:15307–15313. https://doi.org/10.1039/C9RA02088H

    Article  CAS  Google Scholar 

  19. Yoo E-H, Lee S-Y (2010) Glucose biosensors: an overview of use in clinical practice. Sensors 10:4558–4576. https://doi.org/10.3390/s100504558

    Article  Google Scholar 

  20. Shu J, Tang D (2020) Recent advances in photoelectrochemical sensing: from engineered photoactive materials to sensing devices and detection modes. Anal Chem 92:363–377. https://doi.org/10.1021/acs.analchem.9b04199

    Article  CAS  Google Scholar 

  21. Tang J, Wang Y, Li J et al (2014) Sensitive enzymatic glucose detection by TiO2 nanowire photoelectrochemical biosensors. J Mater Chem A 2:6153–6157. https://doi.org/10.1039/C3TA14173J

    Article  CAS  Google Scholar 

  22. Chen D, Jiang D, Du X et al (2016) Engineering efficient charge transfer based on ultrathin graphite-like carbon nitride/WO3 semiconductor nanoheterostructures for fabrication of high-performances non-enzymatic photoelectrochemical glucose sensor. Electrochim Acta 215:305–312. https://doi.org/10.1016/j.electacta.2016.08.113

    Article  CAS  Google Scholar 

  23. Zhang X, Xu F, Zhao B et al (2014) Synthesis of CdS quantum dots decorated graphene nanosheets and non-enzymatic photoelectrochemical detection of glucose. Electrochim Acta 133:615–622. https://doi.org/10.1016/j.electacta.2014.04.089

    Article  CAS  Google Scholar 

  24. Fu Lin C, Haur Kao C, Yu Lin C et al (2020) The electrical and physical characteristics of Mg-doped ZnO sensing membrane in EIS (electrolyte–insulator–semiconductor) for glucose sensing applications. Results Phys 16:102976. https://doi.org/10.1016/j.rinp.2020.102976

    Article  Google Scholar 

  25. Patil AS, Patil RT, Lohar GM, Fulari VJ (2021) Facile synthesis of CuO nanostructures for non-enzymatic glucose sensor by modified SILAR method. Appl Phys A 127:101. https://doi.org/10.1007/s00339-020-04258-y

    Article  CAS  Google Scholar 

  26. He L, Yang Z, Gong C et al (2021) The dual-function of photoelectrochemical glucose oxidation for sensor application and solar-to-electricity production. J Electroanal Chem 882:114912. https://doi.org/10.1016/j.jelechem.2020.114912

    Article  CAS  Google Scholar 

  27. Cao X, Wang N (2011) A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst 136:4241. https://doi.org/10.1039/c1an15367f

    Article  CAS  Google Scholar 

  28. Liu F, Wang P, Zhang Q et al (2019) α-Fe2O3 film with highly photoactivity for non-enzymatic photoelectrochemical detection of glucose. Electroanalysis 31:1809–1814. https://doi.org/10.1002/elan.201900133

    Article  CAS  Google Scholar 

  29. Liu S, Yu B, Zhang T (2013) A novel non-enzymatic glucose sensor based on NiO hollow spheres. Electrochim Acta 102:104–107. https://doi.org/10.1016/j.electacta.2013.03.191

    Article  CAS  Google Scholar 

  30. Khun K, Ibupoto ZH, Liu X et al (2015) The ethylene glycol template assisted hydrothermal synthesis of Co3O4 nanowires; structural characterization and their application as glucose non-enzymatic sensor. Mater Sci Eng B 194:94–100. https://doi.org/10.1016/j.mseb.2015.01.001

    Article  CAS  Google Scholar 

  31. Sen PK, Midya JK, Bysakh S, Pal B (2017) Kinetic and mechanistic studies on the oxidation of d -glucose by MnO2 nanoparticles. Effect of microheterogeneous environments of CTAB, Triton X-100 and Tween 20. Mol Catal 440:75–86. https://doi.org/10.1016/j.mcat.2017.07.009

    Article  CAS  Google Scholar 

  32. Dharuman V, Chandrasekara Pillai K (2006) RuO2 electrode surface effects in electrocatalytic oxidation of glucose. J Solid State Electrochem 10:967–979. https://doi.org/10.1007/s10008-005-0033-7

    Article  CAS  Google Scholar 

  33. Jang K, Park KR, Kim KM et al (2020) Synthesis of NiCo2O4 nanostructures and their electrochemial properties for glucose detection. Nanomaterials 11:55. https://doi.org/10.3390/nano11010055

    Article  CAS  Google Scholar 

  34. Gowthami K, Krishnakumar B, Thirunarayanan G et al (2020) Novel Fe2V4O13/ZnO nano-heterojunction: effective decomposition of methyl orange under solar light irradiation. Mater Today Proc 29:1199–1203. https://doi.org/10.1016/j.matpr.2020.05.431

    Article  CAS  Google Scholar 

  35. Gowthami K, Suppuraj P, Thirunarayanan G et al (2018) Fe2V4O13 assisted hetero-Fenton mineralization of methyl orange under UV-A light irradiation. Iran Chem Commun 6:97–108

    CAS  Google Scholar 

  36. Muthuvel I, Gowthami K, Thirunarayanan G et al (2019) Graphene oxide–Fe2V4O13 hybrid material as highly efficient hetero-Fenton catalyst for degradation of methyl orange. Int J Ind Chem 10:77–87. https://doi.org/10.1007/s40090-019-0173-8

    Article  CAS  Google Scholar 

  37. Zhang YY, Deng JH, He C et al (2010) Application of Fe2V4O13 as a new multi-metal heterogeneous Fenton-like catalyst for the degradation of organic pollutants. Environ Technol 31:145–154. https://doi.org/10.1080/09593330903397755

    Article  CAS  Google Scholar 

  38. Li P, Zhou Y, Li H et al (2015) All-solid-state Z-scheme system arrays of Fe2V4O13/RGO/CdS for visible light-driving photocatalytic CO2 reduction into renewable hydrocarbon fuel. Chem Commun 51:800–803. https://doi.org/10.1039/C4CC08744E

    Article  CAS  Google Scholar 

  39. Li P, Zhou Y, Tu W et al (2013) Direct growth of Fe2V4O13 nanoribbons on a stainless-steel mesh for visible-light photoreduction of CO2 into renewable hydrocarbon fuel and degradation of gaseous isopropyl alcohol. ChemPlusChem 78:274–278. https://doi.org/10.1002/cplu.201200289

    Article  CAS  Google Scholar 

  40. Marikkani S, Kumar JV, Muthuraj V (2019) Design of novel solar-light driven sponge-like Fe2V4O13 photocatalyst: a unique platform for the photoreduction of carcinogenic hexavalent chromium. Sol Energy 188:849–856. https://doi.org/10.1016/j.solener.2019.06.075

    Article  CAS  Google Scholar 

  41. Adarakatti PS, Mahanthappa M, Eranjaneya H, Siddaramanna A (2018) Fe2V4O13 nanoparticles based electrochemical sensor for the simultaneous determination of guanine and adenine at nanomolar concentration. Electroanalysis 30:1971–1982. https://doi.org/10.1002/elan.201800124

    Article  CAS  Google Scholar 

  42. Yogeeshwari RT, Shreenivasa L, Hari Krishna R et al (2020) Synthesis of acid resistant Fe2V4O13-polypyrrole nanocomposite: its application towards the fabrication of disposable electrochemical sensor for the detection of As(III). Mater Res Express 6:126448. https://doi.org/10.1088/2053-1591/ab6896

    Article  CAS  Google Scholar 

  43. Si Y, Zhao L, Yu Z et al (2012) A novel amorphous Fe2V4O13 as cathode material for lithium secondary batteries. Mater Lett 72:145–147. https://doi.org/10.1016/j.matlet.2011.12.104

    Article  CAS  Google Scholar 

  44. Lakkepally S, Kalegowda Y, Ganganagappa N, Siddaramanna A (2018) A new and effective approach for Fe2V4O13 nanoparticles synthesis: evaluation of electrochemical performance as cathode for lithium secondary batteries. J Alloys Compd 737:665–671. https://doi.org/10.1016/j.jallcom.2017.12.096

    Article  CAS  Google Scholar 

  45. Li S-R, Yesibolati N, Qiao Y et al (2012) Electrostatic spray deposition of porous Fe2V4O13 films as electrodes for Li-ion batteries. J Alloys Compd 520:77–82. https://doi.org/10.1016/j.jallcom.2011.12.092

    Article  CAS  Google Scholar 

  46. Patoux S, Richardson TJ (2007) Lithium insertion chemistry of some iron vanadates. Electrochem commun 9:485–491. https://doi.org/10.1016/j.elecom.2006.10.006

    Article  CAS  Google Scholar 

  47. Šurca A, Orel B, Krašovec UO et al (2000) Electrochromic and structural studies of nanocrystalline Fe/V (1:2) oxide and crystalline Fe2V4O13 films. J Electrochem Soc 147:2358. https://doi.org/10.1149/1.1393537

    Article  Google Scholar 

  48. Crespo CT (2019) Electronic, magnetic, optical and solar energy absorption properties of the Fe2V4O13 vanadate. Sol Energy 183:345–349. https://doi.org/10.1016/j.solener.2019.03.041

    Article  CAS  Google Scholar 

  49. Pelissari MRDS, Azevedo Neto NF, Camargo LP, Dall’Antonia LH (2021) Characterization and photo-induced electrocatalytic evaluation for BiVO4 films obtained by the SILAR process. Electrocatalysis 12:211–224. https://doi.org/10.1007/s12678-021-00641-2

    Article  CAS  Google Scholar 

  50. Rueden CT, Schindelin J, Hiner MC et al (2017) Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform 18:529. https://doi.org/10.1186/s12859-017-1934-z

    Article  Google Scholar 

  51. Zhang H, Cheng C (2017) Three-dimensional FTO/TiO2/BiVO4 composite inverse opals photoanode with excellent photoelectrochemical performance. ACS Energy Lett 2:813–821. https://doi.org/10.1021/acsenergylett.7b00060

    Article  CAS  Google Scholar 

  52. Huang L, Shi L, Zhao X et al (2014) Hydrothermal growth and characterization of length tunable porous iron vanadate one-dimensional nanostructures. CrystEngComm 16:5128–5133. https://doi.org/10.1039/C3CE42608D

    Article  CAS  Google Scholar 

  53. Wang X, Heier KR, Stern CL, Poeppelmeier KR (1998) Structural comparison of iron tetrapolyvanadate Fe2V4O13 and iron polyvanadomolybdate Fe2V3.16Mo0.84O13.42: a new substitution mechanism of molybdenum(VI) for vanadium(V). Inorg Chem 37:6921–6927. https://doi.org/10.1021/ic980942t

    Article  CAS  Google Scholar 

  54. Vuk AŠ, Orel B, Dražič G, Colomban P (2002) Vibrational spectroscopy and analytical electron microscopy studies of Fe-V-O and In-V-O thin films. In: Hofmann H, Rahman Z, Schubert U (eds) Nanostructured materials. Springer, Vienna, pp 153–172

    Chapter  Google Scholar 

  55. Seetharaman S, Bhat HL, Narayanan PS (1983) Raman spectroscopic studies on sodium metavanadate. J Raman Spectrosc 14:401–405. https://doi.org/10.1002/jrs.1250140608

    Article  CAS  Google Scholar 

  56. Wood DL, Tauc J (1972) Weak absorption tails in amorphous semiconductors. Phys Rev B 5:3144–3151. https://doi.org/10.1103/PhysRevB.5.3144

    Article  Google Scholar 

  57. Fu Y, Li J, Li J (2019) Metal/semiconductor nanocomposites for photocatalysis: fundamentals, structures, applications and properties. Nanomaterials 9:359. https://doi.org/10.3390/nano9030359

    Article  CAS  Google Scholar 

  58. Rajeshwar K, de Tacconi NR (2009) Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation. Chem Soc Rev 38:1984. https://doi.org/10.1039/b811238j

    Article  CAS  Google Scholar 

  59. Baccaro A, Gutz I (2017) Fotoeletrocatálise em semicondutores: dos princípios básicos até sua conformação à nanoescala. Quim Nova 41:326–339. https://doi.org/10.21577/0100-4042.20170174

    Article  CAS  Google Scholar 

  60. Zheng M, Cui Y, Li X et al (2011) Photoelectrochemical sensing of glucose based on quantum dot and enzyme nanocomposites. J Electroanal Chem 656:167–173. https://doi.org/10.1016/j.jelechem.2010.11.036

    Article  CAS  Google Scholar 

  61. Zhang Y, Zhao G, Shi H et al (2015) Photoelectrocatalytic glucose oxidation to promote hydrogen production over periodically ordered TiO2 nanotube arrays assembled of Pd quantum dots. Electrochim Acta 174:93–101. https://doi.org/10.1016/j.electacta.2015.05.094

    Article  CAS  Google Scholar 

  62. Atchudan R, Muthuchamy N, Edison TNJI et al (2019) An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles. Biosens Bioelectron 126:160–169. https://doi.org/10.1016/j.bios.2018.10.049

    Article  CAS  Google Scholar 

  63. Liu X, Huo X, Liu P et al (2017) Assembly of MoS2 nanosheet-TiO2 nanorod heterostructure as sensor scaffold for photoelectrochemical biosensing. Electrochim Acta 242:327–336. https://doi.org/10.1016/j.electacta.2017.05.037

    Article  CAS  Google Scholar 

  64. Gopalan A, Muthuchamy N, Lee K (2017) A novel bismuth oxychloride-graphene hybrid nanosheets based non-enzymatic photoelectrochemical glucose sensing platform for high performances. Biosens Bioelectron 89:352–360. https://doi.org/10.1016/j.bios.2016.07.017

    Article  CAS  Google Scholar 

  65. Zhang J, Tu L, Zhao S et al (2015) Fluorescent gold nanoclusters based photoelectrochemical sensors for detection of H2O2 and glucose. Biosens Bioelectron 67:296–302. https://doi.org/10.1016/j.bios.2014.08.037

    Article  CAS  Google Scholar 

  66. Zhai YJ, Li JH, Chu XY et al (2016) MoS2 microflowers based electrochemical sensing platform for non-enzymatic glucose detection. J Alloys Compd 672:600–608. https://doi.org/10.1016/j.jallcom.2016.02.130

    Article  CAS  Google Scholar 

  67. Zhai Y, Li J, Chu X, et al (2016) Preparation of Au-MoS2 electrochemical electrode and investigation on glucose detection characteristics. In: 2016 IEEE international conference on manipulation, manufacturing and measurement on the nanoscale (3M-NANO). IEEE, pp 287–290

  68. Zarei E, Ojani R (2017) Fundamentals and some applications of photoelectrocatalysis and effective factors on its efficiency: a review. J Solid State Electrochem 21:305–336. https://doi.org/10.1007/s10008-016-3385-2

    Article  CAS  Google Scholar 

  69. Fabrao RM, de Brito JF, da Silva JL et al (2016) Appraisal of photoelectrocatalytic oxidation of glucose and production of high value chemicals on nanotube Ti/TiO2 electrode. Electrochim Acta 222:123–132. https://doi.org/10.1016/j.electacta.2016.10.164

    Article  CAS  Google Scholar 

  70. Li H, Guo C, Liu C et al (2020) Laser-induced graphene hybrid photoelectrode for enhanced photoelectrochemical detection of glucose. Analyst 145:4041–4049. https://doi.org/10.1039/D0AN00252F

    Article  CAS  Google Scholar 

  71. Burtis CA, Bruns DE (2015) Tietz fundamentals of clinical chemistry and molecular diagnostics, 7th edn. Elsevier, Amsterdam

    Google Scholar 

  72. Kawasaki T, Akanuma H, Yamanouchi T (2002) Increased fructose concentrations in blood and urine in patients with diabetes. Diabetes Care 25:353–357. https://doi.org/10.2337/diacare.25.2.353

    Article  CAS  Google Scholar 

  73. Gottås A, Ripel Å, Boix F et al (2015) Determination of dopamine concentrations in brain extracellular fluid using microdialysis with short sampling intervals, analyzed by ultra high performance liquid chromatography tandem mass spectrometry. J Pharmacol Toxicol Methods 74:75–79. https://doi.org/10.1016/j.vascn.2015.06.002

    Article  CAS  Google Scholar 

  74. Martinello F, da Silva EL (2003) Interferência do ácido ascórbico nas determinações de parâmetros bioquímicos séricos: estudos in vivo e in vitro. J Bras Patol e Med Lab 39:323–334. https://doi.org/10.1590/S1676-24442003000400010

    Article  CAS  Google Scholar 

  75. Ci S, Mao S, Huang T et al (2014) Enzymeless glucose detection based on CoO/Graphene microsphere hybrids. Electroanalysis 26:1326–1334. https://doi.org/10.1002/elan.201300645

    Article  CAS  Google Scholar 

  76. Chen L, Chen Y, Miao L et al (2020) Photocurrent switching effect on BiVO4 electrodes and its application in development of photoelectrochemical glucose sensor. J Solid State Electrochem 24:411–420. https://doi.org/10.1007/s10008-019-04469-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank LMEM-UEL, LARXUEL and LABSPEC-UEL for the SEM, XRD and Raman analysis. The authors would also like to thank CTI/FEB/UNESP-Bauru, and the four anonymous reviewers are also thanked for constructive criticism of an earlier manuscript version.

Funding

The authors were financially supported by CNPq (process 406459/2016–9), Fundação Araucária (PROT. 38.647 SIT. 22391) and INCT in Bioanalytics (FAPESP Grant No. 2014/50867–3 and CNPq Grant No. 468359/2014–7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Henrique Dall’Antonia.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4293 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Pelissari, M.R., Camargo, L.P., da Silva, P.R.C. et al. Fe2V4O13 photoanode material: an interesting approach to non-enzymatic glucose oxidation. J Mater Sci 57, 7173–7190 (2022). https://doi.org/10.1007/s10853-022-07093-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07093-z

Navigation