Skip to main content
Log in

Photocurrent switching effect on BiVO4 electrodes and its application in development of photoelectrochemical glucose sensor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we reported the photocurrent switching effect on BiVO4 semiconductor as well as its application for construction of a new cathodic photoelectrochemical (PEC) biosensor. Specifically, the photocurrent switching effect of BiVO4 upon fluorine doped tin oxide (FTO) glass substrate was greatly dependent on its treatment temperature and composition of solution in the cell. The photocurrent transition potential from anode to cathode is ~ 0.38 V (vs SCE) in the presence of O2. H2O2 can act as electron acceptor to improve cathodic PEC current at electrode treated under 500 °C. A cathodic PEC biosensor of glucose was designed based on glucose oxidase (GOD). The GOD/BiVO4/FTO photoelectrode exhibited high sensitivity towards the enzyme reaction production of H2O2. This PEC biosensor shows a good response on the concentration of glucose and exhibits a dynamic range of 1~400 μM with a detection limit of 0.73 μM. Interference from oxygen fluctuation was negligible. The present work provides a promising approach to develop other oxidase-based PEC biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim HB, Choi H, Jeong J, Kim S, Walker B, Song S, Kim JY (2014) Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale 6(12):6679–6683

    CAS  PubMed  Google Scholar 

  2. Ge L (2008) Novel visible-light-driven Pt/BiVO4 photocatalyst for efficient degradation of methyl orange. J Mol Catal A Chem 282(1–2):62–66

    CAS  Google Scholar 

  3. Malathi A, Madhavan J, Ashokkumar M et al (2018) A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications. Appl Catal A Gen 555:47–74

    CAS  Google Scholar 

  4. Abdi FF, Han L, Smets AHM et al (2013) Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat Commun 4:1–7

    Google Scholar 

  5. Samsudin MFR, Sufian S, Hameed BH (2018) Epigrammatic progress and perspective on the photocatalytic properties of BiVO4-based photocatalyst in photocatalytic water treatment technology: a review. J Mol Liq 268:438–459

    CAS  Google Scholar 

  6. Kalanoor BS, Hyungtak S, Kalanur SS (2018) Recent developments in photoelectrochemical water-splitting using WO3 /BiVO4 heterojunction photoanode: a review. Mater Sci Eng Technol 1:49–62

    Google Scholar 

  7. Liu M, Yu YX, Zhang W (2017) A non-enzymatic hydrogen peroxide photoelectrochemical sensor based on a BiVO4 electrode. Electroanalysis 29(1):305–311

    CAS  Google Scholar 

  8. Yu Z, Lv S, Ren R et al (2017) Photoelectrochemical sensing of hydrogen peroxide at zero working potential using a fluorine-doped tin oxide electrode modified with BiVO4 microrods. Microchim Acta 184(3):799–806

    CAS  Google Scholar 

  9. do Prado TM, Cincotto FH, Fatibello-Filho O et al (2018) Bismuth vanadate/reduced graphene oxide nanocomposite electrode for photoelectrochemical determination of diclofenac in urine. Electroanalysis 30:2704–2711

    Google Scholar 

  10. Liu PP, Liu X, Huo XH, Tang Y, Xu J, Ju H (2017) TiO2-BiVO4 heterostructure to enhance photoelectrochemical efficiency for sensitive aptasensing. ACS Appl Mater Interfaces 9(32):27185–27192

    CAS  PubMed  Google Scholar 

  11. Feng J, Li Y, Gao Z et al (2017) Visible-light driven label-free photoelectrochemical immunosensor based on TiO2/S-BiVO4@Ag2S nanocomposites for sensitive detection OTA. Biosens Bioelectron 99:14–20

    PubMed  Google Scholar 

  12. Wang H, Yin H, Huang H, Li K, Zhou Y, Waterhouse GIN, Lin H, Ai S (2018) Dual-signal amplified photoelectrochemical biosensor for detection of N(6)-methyladenosine based on BiVO4-110-TiO2 heterojunction, Ag(+)-mediated cytosine pairs. Biosens Bioelectron 108:89–96

    CAS  PubMed  Google Scholar 

  13. Shu J, Qiu Z, Zhou Q, Lin Y, Lu M, Tang D (2016) Enzymatic oxydate-triggered self-illuminated photoelectrochemical sensing platform for portable immunoassay using digital multimeter. Anal Chem 88(5):2958–2966

    CAS  PubMed  Google Scholar 

  14. Wang GL, Shu JX, Dong YM, Wu XM, Zhao WW, Xu JJ, Chen HY (2015) Using G-quadruplex/hemin to “switch-on” the cathodic photocurrent of p-type PbS quantum dots: toward a versatile platform for photoelectrochemical aptasensing. Anal Chem 87(5):2892–2900

    CAS  PubMed  Google Scholar 

  15. Gong L, Dai H, Zhang S, Lin Y (2016) Silver iodide-chitosan nanotag induced biocatalytic precipitation for self-enhanced ultrasensitive photocathodic immunosensor. Anal Chem 88(11):5775–5782

    CAS  PubMed  Google Scholar 

  16. Antuch M, Millet P, Iwase A, Kudo A (2018) The role of surface states during photocurrent switching: intensity modulated photocurrent spectroscopy analysis of BiVO4 photoelectrodes. Appl Catal B Environ 237:401–408

    CAS  Google Scholar 

  17. Iwase A, Kudo A (2010) Photoelectrochemical water splitting using visible-light-responsive BiVO4 fine particles prepared in an aqueous acetic acid solution. J Mater Chem 20:7536–7542

    CAS  Google Scholar 

  18. Gawęda S, Kowalik R, Kwolek P, Macyk W, Mech J, Oszajca M, Podborska A, Szaciłowski K (2011) Nanoscale digital devices based on the photoelectrochemical photocurrent switching effect: preparation, properties and applications. Isr J Chem 51(1):36–55

    Google Scholar 

  19. Kwolek P, Szaciłowski K (2013) Photoelectrochemistry of n-type bismuth oxyiodide. Electrochim Acta 104:448–453

    CAS  Google Scholar 

  20. Kazyrevich ME, Malashchonak МV, Mazanik AV, Streltsov EA, Kulak AI, Bhattacharya C (2016) Photocurrent switching effect on platelet-like BiOI electrodes: influence of redox system, light wavelength and thermal treatment. Electrochim Acta 190:612–619

    CAS  Google Scholar 

  21. El Harakeh M, Alawieh L, Saouma S, Halaoui LI (2009) Charge separation and photocurrent polarity-switching at CdS quantum dots assembly in polyelectrolyte interfaced with hole scavengers. Phys Chem Chem Phys 11(8):5962–5973

    PubMed  Google Scholar 

  22. Yu ZG, Wu P, Gong H (2006) Control of p- and n-type conductivities in P doped ZnO thin films by using radio-frequency sputtering. Appl Phys Lett 88(13):132114–132116

    Google Scholar 

  23. Dong D, Zheng D, Wang FQ et al (2003) Quantitative photoelectrochemical detection of biological affinity reaction: biotin−avidin interaction. Anal Chem 76(2):499–501

    Google Scholar 

  24. Ojani R, Safshekan S, Raoof JB (2014) Photoelectrochemical oxidation of hydrazine on TiO2modified titanium electrode: its application for detection of hydrazine. J Solid State Electrochem 18(3):779–783

    CAS  Google Scholar 

  25. Zhang H, Gao Q, Li H (2016) A novel photoelectrochemical hydrogen peroxide sensor based on nickel(II)-potassium hexacyanoferrate-graphene hybrid materials modified n-silicon electrode. J Solid State Electrochem 20(6):1565–1573

    CAS  Google Scholar 

  26. Alves SA, Soares LL, Goulart LA et al (2016) Solvent effects on the photoelectrochemical properties of WO3 and its application as dopamine sensor. J Solid State Electrochem 20(9):2461–2470

    CAS  Google Scholar 

  27. Yehezkeli O, Moshe M, Tel-Vered R, Feng Y, Li Y, Tian H, Willner I (2010) Switchable photochemical/electrochemical wiring of glucose oxidase with electrodes. Analyst 135(3):474–476

    CAS  PubMed  Google Scholar 

  28. Wu XW, Lee CC, Muzny DM, Caskey CT (1989) Urate oxidase - primary structure and evolutionary implications. Proc Natl Acad Sci U S A 86(23):9412–9416

    CAS  PubMed  PubMed Central  Google Scholar 

  29. MacLachlan J, Wotherspoon ATL, Ansell RO, Brooks CJW (2000) Cholesterol oxidase: sources, physical properties and analytical applications. J Steroid Biochem Mol Biol 72(5):169–195

    CAS  PubMed  Google Scholar 

  30. Granger DN (1988) Role of xanthine-oxidase and granulocytes in ischemia-reperfusion injury. Am J Phys 255:H1269–H1275

    CAS  Google Scholar 

  31. Zhao WW, Xu JJ, Chen HY (2016) Photoelectrochemical enzymatic biosensors. Biosens Bioelectron 92:294–304

    PubMed  Google Scholar 

  32. Su QJ, Klinman JP (1999) Nature of oxygen activation in glucose oxidase from Aspergillus niger: the importance of electrostatic stabilization in superoxide formation. Biochemistry 38(26):8572–8581

    CAS  PubMed  Google Scholar 

  33. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825

    CAS  PubMed  Google Scholar 

  34. Guadagnini L, Giorgetti M, Tonelli D (2019) Pure copper vs. mixed copper and palladium hexacyanoferrates for glucose biosensing applications. J Solid State Electrochem 17(11):2805–2814

    Google Scholar 

  35. Dai WX, Zhang L, Zhao WW, Yu XD, Xu JJ, Chen HY (2017) Hybrid PbS quantum dot/nanoporous NiO film nanostructure: preparation, characterization, and application for a self-powered cathodic photoelectrochemical biosensor. Anal Chem 89(15):8070–8078

    CAS  PubMed  Google Scholar 

  36. Zhang L, Ruan YF, Liang YY, Zhao WW, Yu XD, Xu JJ, Chen HY (2018) Bismuth oxyiodide couples with glucose oxidase: a special synergized dual-catalysis mechanism for photoelectrochemical enzymatic bioanalysis. ACS Appl Mater Interfaces 10:3372–3379

    CAS  PubMed  Google Scholar 

  37. Zhao WW, Wang J, Zhu YC, Xu JJ, Chen HY (2015) Quantum dots: electrochemiluminescent and photoelectrochemical bioanalysis. Anal Chem 87(19):9520–9531

    CAS  PubMed  Google Scholar 

  38. Zhang X, Liu M, Liu H, Zhang S (2014) Low-toxic Ag2S quantum dots for photoelectrochemical detection glucose and cancer cells. Biosens Bioelectron 56:307–312

    CAS  PubMed  Google Scholar 

  39. Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108(7):2482–2505

    CAS  PubMed  Google Scholar 

  40. Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137(1):49–58

    CAS  PubMed  Google Scholar 

  41. Wang DD, Chen LP, Liu J,Guan FY, Sun RZ at al (2018) A reliable photoelectrochemical bioassay system based on cathodic reaction at a solid–liquid–air joint interface. Adv Funct Mater 28:1804410

    Google Scholar 

  42. Hao Q, Wang P, Ma X, Su M, Lei J, Ju H (2012) Charge recombination suppression-based photoelectrochemical strategy for detection of dopamine. Electrochem Commun 21(1):39–41

    CAS  Google Scholar 

  43. Miao XM, Yuan R, Chai YQ, Shi YT, Yuan YY (2008) Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode. J Electroanal Chem 612(2):157–163

    CAS  Google Scholar 

  44. Wang GL, Liu KL, Dong YM, Wu XM, Li ZJ, Zhang C (2014) A new approach to light up the application of semiconductor nanomaterials for photoelectrochemical biosensors: using self-operating photocathode as a highly selective enzyme sensor. Biosens Bioelectron 62:66–72

    CAS  PubMed  Google Scholar 

  45. Zhang A, Zhang J (2009) Characterization of visible-light-driven BiVO4 photocatalysts synthesized via a surfactant-assisted hydrothermal method. Spectrochim Acta A Mol Biomol Spectrosc 73(2):336–341

    PubMed  Google Scholar 

  46. Tokunaga S, Kato H, Kudo A (2001) Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem Mater 13:4624–4628

    CAS  Google Scholar 

  47. Phu ND, Hoang LH, Vu PK, Kong MH, Chen XB, Wen HC, Chou WC (2016) Control of crystal phase of BiVO4 nanoparticles synthesized by microwave assisted method. J Mater Sci Mater Electron 27:6452–6456

    CAS  Google Scholar 

  48. Butler MA (1997) Photoelectrolysis and physical properties of the semiconducting electrode WO3. J Appl Phys 48(5):1914–1920

    Google Scholar 

  49. Fang Y, Wang S, Liu Y, Xu Z, Zhang K, Guo Y (2018) Development of cu nanoflowers modified the flexible needle-type microelectrode and its application in continuous monitoring glucose in vivo. Biosens Bioelectron 110:44–51

    CAS  PubMed  Google Scholar 

  50. Wang T, Zhu H, Zhuo J, Zhu Z, Papakonstantinou P, Lubarsky G, Lin J, Li M (2013) Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal Chem 85(21):10289–10295

    CAS  PubMed  Google Scholar 

  51. Ojani R, Raoof JB, Norouzi B (2011) Performance of glucose electrooxidation on Ni–Co composition dispersed on the poly(isonicotinic acid) (SDS) film. J Solid State Electrochem 15(6):1139–1147

    CAS  Google Scholar 

  52. Elahi MY, Heli H, Bathaie SZ et al (2017) Electrocatalytic oxidation of glucose at a Ni-curcumin modified glassy carbon electrode. J Solid State Electrochem 11(2):273–282

    Google Scholar 

  53. Chekin F, Bagheri S, Arof AK et al (2012) Preparation and characterization of Ni(II)/polyacrylonitrile and carbon nanotube composite modified electrode and application for carbohydrates electrocatalytic oxidation. J Solid State Electrochem 16(10):3245–3251

    CAS  Google Scholar 

  54. Soomro RA, Ibupoto ZH, Sirajuddin AMI, Willander M (2015) Controlled synthesis and electrochemical application of skein-shaped NiO nanostructures. J Solid State Electrochem 19(3):913–922

    CAS  Google Scholar 

  55. Tanne J, Schäfer D, Khalid W, Parak WJ, Lisdat F (2011) Light-controlled bioelectrochemical sensor based on CdSe/ZnS quantum dots. Anal Chem 83(20):7778–7785

    CAS  PubMed  Google Scholar 

  56. Wu P, He Y, Wang HF, Yan XP (2010) Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids. Anal Chem 82(4):1427–1433

    CAS  PubMed  Google Scholar 

  57. Liu X, Huo X, Liu P, Tang Y, Xu J, Liu X, Zhou Y (2017) Assembly of MoS2 nanosheet-TiO2 nanorod heterostructure as sensor scaffold for photoelectrochemical biosensing. Electrochim Acta 242:327–336

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 21475092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Di.

Additional information

Dedicated to the memory of Ivo Alexandre Hümmelgen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Chen, Y., Miao, L. et al. Photocurrent switching effect on BiVO4 electrodes and its application in development of photoelectrochemical glucose sensor. J Solid State Electrochem 24, 411–420 (2020). https://doi.org/10.1007/s10008-019-04469-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04469-1

Keywords

Navigation