Skip to main content

Advertisement

Log in

Active site construction to boost electrochemical property for Li–S batteries: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lithium–sulfur (Li–S) batteries, as a research hotspot, are expected to address the need for energy storage systems with high energy density. However, the slow reaction kinetics of polysulfides due to the loss of electrical contact of soluble polysulfides and further shuttle effect hinder the further progression of Li–S batteries. This paper reviews the recent efficient approach to remedy the above issues: active site construction in the electrode materials or separators. The active site construction includes the increasing surface area, inducing molecular and single-atom catalysts, inducing heteroatomic doping, vacancies, or functional group. The high specific surface area can provide more sites for loading sulfur and also the more active sites for adsorption. Many porous materials are designed to provide more transfer paths for ions. Molecular and single-atom catalysts use some catalysts such as Fe–N–C or single metal atoms in various matrixes, representing the high catalytic activity. Defects can improve the electronic conductivity to quicken lithium ions diffusion in electrode materials, but also render more active sites to enhance catalytic activity and adsorption of electrode materials, accelerating the conversion of long-chain polysulfides to the next short-chain polysulfides and final products Li2S2/Li2S. The common active site construction and characterization methods of diversiform materials, for example, carbon materials, metal oxides, metal sulfides, and some other metal-free materials, are reviewed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Copyright 2018, Elsevier.) b SEM images of b-(a, b) pristine (without melamine), b-(c) NBC-5, b-(d, e) NBC-10, b-(f, g) NBC-15, b-(h) NBC-20. NBC means N-doped bagasse carbon, and the number notes the ratio of bagasse to melamine 1:5, 1:10, 1:15, 1:20. (Adapted with permission from reference [78]. Copyright 2019, Elsevier.)

Figure 3

Copyright 2019, American Chemical Society.) b HR-TEM images of CVD and Co3O4-DHS. (Adapted with permission from reference [90], Copyright 2020, American Chemical Society.) c HR-TEM, FFT, and IFFT images of Co3O4 and Co3O4−x. (Adapted with permission from reference [103], Copyright 2020, Elsevier.)

Figure 4

Copyright 2015, Science.) b STEM image of SrTiO3 film with Sr vacancies and the intensity of Sr and Ti–O. (Adapted with permission from reference [104]. Copyright 2016, American Physical Society.)

Figure 5

Copyright 2020, Wiley.) c, d Fe K-edge XANES and Fourier transform (FT) EXAFS signals of FeN/GN samples with various Fe contents in comparison with FePc, Fe foil, and Fe2O3. (Adapted with permission from reference [64]. Copyright 2015, Science.) e EPR spectra of Co3O4 with different doping contents of Fe. (Adapted with permission from reference [109]. Copyright 2020, American Chemical Society.) f, g RS and KPMF images of graphite. (Adapted with permission from reference [112]. Copyright 2019, Wiley.)

Figure 6

Copyright 2020, American Chemical Society.) b DOS of NiSe2 (001) and Fe–NiSe2 (001). (Adapted with permission from reference [114]. Copyright 2021, Wiley.) c HR-TEM and crystal structures of Co-doped MoS2. (Adapted with permission from reference [115]. Copyright 2019, Wiley.)

Figure 7

Copyright 2020, Elsevier.) b EIS spectra of the cells with N-PCNW-modified and Celgard separator. (Adapted with permission from reference [118]. Copyright 2016, Elsevier.) c Diffusion of polysulfides test of NHCs-modified and pristine separator. (Adapted with permission from reference [120]. Copyright 2015, Elsevier.)

Figure 8

Copyright 2018, Elsevier.) b CV curves of Li2S6|Li2S6 symmetrical cells with CP-P-NTC, CP- TC, and CP. (Adapted with permission from reference [108]. Copyright 2020, Elsevier.) c Precipitation of Li2S based on N-CoSe2, CoSe2, and Super-P. (Adapted with permission from reference [75]. Copyright 2020, American Chemical Society.)

Figure 9

Copyright 2019, Wiley.) b CV curves and Tafel plots of ODFO@3DGC@S, FO@3DGC@S, and 3DGC@S. c Theoretical simulation of ODFO and OF. (Adapted with permission from reference [125]. Copyright 2020, American Chemical Society.)

Figure 10

Copyright 2020, American Chemical Society.)

Figure 11

Copyright 2020, American Chemical Society.)

Similar content being viewed by others

References

  1. He J, Hartmann G, Lee M, Hwang GS, Chen Y, Manthiram A (2019) Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries. Energy Environ Sci 12:344–350. https://doi.org/10.1039/c8ee03252a

    Article  CAS  Google Scholar 

  2. Liang X, Liu Y, Wen Z, Huang L, Wang X, Zhang H (2011) A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium–sulfur batteries. J Power Sources 196:6951–6955. https://doi.org/10.1016/j.jpowsour.2010.11.132

    Article  CAS  Google Scholar 

  3. Yu B, Chen D, Wang Z et al (2020) Mo2C quantum dots@graphene functionalized separator toward high-current-density lithium metal anodes for ultrastable Li–S batteries. Chem Eng J 399:125837. https://doi.org/10.1016/j.cej.2020.125837

    Article  CAS  Google Scholar 

  4. Luo L, Chung SH, Yaghoobnejad Asl H, Manthiram A (2018) Long-life lithium–sulfur batteries with a bifunctional cathode substrate configured with boron carbide nanowires. Adv Mater 30:e1804149. https://doi.org/10.1002/adma.201804149

    Article  CAS  Google Scholar 

  5. Zhao M, Li BQ, Peng HJ, Yuan H, Wei JY, Huang JQ (2020) Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew Chem Int Ed Engl 59:12636–12652. https://doi.org/10.1002/anie.201909339

    Article  CAS  Google Scholar 

  6. Pan Y, Guan WM (2018) Prediction of new phase and electrochemical properties of Li2S2 for the application of Li–S batteries. Inorg Chem 57:6617–6623. https://doi.org/10.1021/acs.inorgchem.8b00747

    Article  CAS  Google Scholar 

  7. Fang R, Zhao S, Sun Z, Wang DW, Cheng HM, Li F (2017) More reliable lithium–sulfur batteries: status. Solut Prospects Adv Mater. https://doi.org/10.1002/adma.201606823

    Article  Google Scholar 

  8. Shaibani M, Mirshekarloo MS, Singh R et al (2020) Expansion-tolerant architectures for stable cycling of ultrahigh-loading sulfur cathodes in lithium–sulfur batteries. Sci Adv 6:11. https://doi.org/10.1126/sciadv.aay2757

    Article  CAS  Google Scholar 

  9. Liu D, Zhang C, Zhou G et al (2018) Catalytic effects in lithium–sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv Sci 5:1700270. https://doi.org/10.1002/advs.201700270

    Article  CAS  Google Scholar 

  10. Zhao M, Li BQ, Peng HJ, Yuan H, Wei JY, Huang JQ (2020) Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew Chem Int Ed 59:12636–12652. https://doi.org/10.1002/anie.201909339

    Article  CAS  Google Scholar 

  11. Yang Y, Zhong Y, Shi Q, Wang Z, Sun K, Wang H (2018) Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions. Angew Chem Int Ed Engl 57:15549–15552. https://doi.org/10.1002/anie.201808311

    Article  CAS  Google Scholar 

  12. Wang N, Xu Z, Xu X et al (2018) Synergistically enhanced interfacial interaction to polysulfide via N, O dual-doped highly porous carbon microrods for advanced lithium–sulfur batteries. ACS Appl Mater Inter 10:13573–13580. https://doi.org/10.1021/acsami.8b02084

    Article  CAS  Google Scholar 

  13. Wang X, Li G, Li M et al (2021) Reinforced polysulfide barrier by g-C3N4/CNT composite towards superior lithium–sulfur batteries. J Energy Chem 53:234–240. https://doi.org/10.1016/j.jechem.2020.05.036

    Article  Google Scholar 

  14. Wang F, Wang H, Mao J (2018) Aligned-graphene composites: a review. J Mater Sci 54:36–61. https://doi.org/10.1007/s10853-018-2849-4

    Article  CAS  Google Scholar 

  15. Cao J, Chen C, Zhao Q et al (2016) A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium–sulfur batteries with unconventional configurations. Adv Mater 28:9629–9636. https://doi.org/10.1002/adma.201602262

    Article  CAS  Google Scholar 

  16. Yuan Z, Peng H-J, Huang J-Q et al (2014) Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium–sulfur batteries. Adv Funct Mater 24:6105–6112. https://doi.org/10.1002/adfm.201401501

    Article  CAS  Google Scholar 

  17. Wang Z, Shen J, Liu J et al (2019) Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium–sulfur batteries. Adv Mater 31:e1902228. https://doi.org/10.1002/adma.201902228

    Article  CAS  Google Scholar 

  18. Zhou G, Zhao Y, Zu C, Manthiram A (2015) Free-standing TiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries. Nano Energy 12:240–249. https://doi.org/10.1016/j.nanoen.2014.12.029

    Article  CAS  Google Scholar 

  19. Hu N, Lv X, Dai Y, Fan L, Xiong D, Li X (2018) SnO2/reduced graphene oxide interlayer mitigating the shuttle effect of Li–S batteries. ACS Appl Mater Inter 10:18665–18674. https://doi.org/10.1021/acsami.8b03255

    Article  CAS  Google Scholar 

  20. Liang X, Nazar LF (2016) In situ reactive assembly of scalable core-shell sulfur-MnO2 composite cathodes. ACS Nano 10:4192–4198. https://doi.org/10.1021/acsnano.5b07458

    Article  CAS  Google Scholar 

  21. Gao P, Chen Z, Gong Y et al (2020) The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals. Adv Energy Mater 10:1903780. https://doi.org/10.1002/aenm.201903780

    Article  CAS  Google Scholar 

  22. Hua Y, Li X, Zhang X et al (2019) Active anchoring polysulfides of ZnS-decorated porous carbon aerogel for a high-performance lithium–sulfur battery. ChemElectroChem 6:2570–2577. https://doi.org/10.1002/celc.201900556

    Article  CAS  Google Scholar 

  23. Lei T, Chen W, Huang J et al (2017) Multi-functional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries. Adv Energy Mater 7:1601843. https://doi.org/10.1002/aenm.201601843

    Article  CAS  Google Scholar 

  24. He J, Chen Y, Manthiram A (2018) Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries. Energy Environ Sci 11:2560–2568. https://doi.org/10.1039/c8ee00893k

    Article  CAS  Google Scholar 

  25. You Y, Ye Y, Wei M et al (2019) Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium–sulfur batteries. Chem Eng J 355:671–678. https://doi.org/10.1016/j.cej.2018.08.176

    Article  CAS  Google Scholar 

  26. Wang MX, Fan LS, Wu X et al (2019) Metallic NiSe2 nanoarrays towards ultralong life and fast Li2S oxidation kinetics of Li–S batteries. J Mater Chem A 7:15302–15308. https://doi.org/10.1039/c9ta03361k

    Article  CAS  Google Scholar 

  27. Yuan B, Hua D, Gu XX et al (2020) Polar, catalytic, and conductive CoSe2/C frameworks for performance enhanced S cathode in Li–S batteries. J Energy Chem 48:128–135. https://doi.org/10.1016/j.jechem.2019.12.020

    Article  Google Scholar 

  28. Lim WG, Jo C, Cho A et al (2019) Approaching ultrastable high-rate Li–S batteries through hierarchically porous titanium nitride synthesized by multiscale phase separation. Adv Mater 31:e1806547. https://doi.org/10.1002/adma.201806547

    Article  CAS  Google Scholar 

  29. Tsou W-T, Wu C-Y, Yang H, Duh J-G (2018) Improving the electrochemical performance of lithium–sulfur batteries using an Nb-doped TiO2 additive layer for the chemisorption of lithium polysulfides. Electrochim Acta 285:16–22. https://doi.org/10.1016/j.electacta.2018.07.214

    Article  CAS  Google Scholar 

  30. Chen S, Luo J, Li N et al (2020) Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium–sulfur battery cathodes with ultralong lifespan. Energy Storage Mater 30:187–195. https://doi.org/10.1016/j.ensm.2020.05.002

    Article  Google Scholar 

  31. Hong X, Liu Y, Fu J et al (2020) A wheat flour derived hierarchical porous carbon/graphitic carbon nitride composite for high-performance lithium–sulfur batteries. Carbon 170:119–126. https://doi.org/10.1016/j.carbon.2020.08.032

    Article  CAS  Google Scholar 

  32. Shi P, Wang Y, Liang X et al (2018) Simultaneously exfoliated boron-doped graphene sheets to encapsulate sulfur for applications in lithium–sulfur batteries. ACS Sustain Chem Eng 6:9661–9670. https://doi.org/10.1021/acssuschemeng.8b00378

    Article  CAS  Google Scholar 

  33. Feng Y, Liu H, Zhao F, Liu Y, Li J, Liu X (2021) Simultaneous defect-engineered and thiol modified of MoO2 for improved catalytic activity in lithium–sulfur batteries: a study of synergistic polysulfide adsorption-conversion function. Chem Eng J 409:128177. https://doi.org/10.1016/j.cej.2020.128177

    Article  CAS  Google Scholar 

  34. Ma H, Song C, Liu N, Zhao Y, Bakenov Z (2020) Nitrogen-deficient graphitic carbon nitride/carbon nanotube as polysulfide barrier of high-performance lithium–sulfur batteries. ChemElectroChem 7:4906–4912. https://doi.org/10.1002/celc.202001259

    Article  CAS  Google Scholar 

  35. Xu L, Jiang Q, Xiao Z et al (2016) Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem Int Ed Engl 55:5277–5281. https://doi.org/10.1002/anie.201600687

    Article  CAS  Google Scholar 

  36. Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11:4462–4467. https://doi.org/10.1021/nl2027684

    Article  CAS  Google Scholar 

  37. Yoo J, Cho SJ, Jung GY et al (2016) COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium–sulfur batteries. Nano Lett 16:3292–3300. https://doi.org/10.1021/acs.nanolett.6b00870

    Article  CAS  Google Scholar 

  38. Chen K, Sun Z, Fang R, Shi Y, Cheng H-M, Li F (2018) Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium–sulfur batteries. Adv Funct Mater 28:1707592. https://doi.org/10.1002/adfm.201707592

    Article  CAS  Google Scholar 

  39. Mao L, Mao J (2021) New composite nanostructure ZnO derived from ZnS(en)0.5. Russ J Inorg Chem 66:608–612. https://doi.org/10.1134/s0036023621040161

    Article  CAS  Google Scholar 

  40. Chen S, Pan Y (2021) Noble metal interlayer-doping enhances the catalytic activity of 2H–MoS2 from first-principles investigations. Int J Hydrog Energy 46:21040–21049. https://doi.org/10.1016/j.ijhydene.2021.03.202

    Article  CAS  Google Scholar 

  41. Wang F, Hu Z, Mao L, Mao J (2020) Nano-silicon @ soft carbon embedded in graphene scaffold: high-performance 3D free-standing anode for lithium-ion batteries. J Power Sources 450:227692. https://doi.org/10.1016/j.jpowsour.2019.227692

    Article  CAS  Google Scholar 

  42. Li L, Chen L, Mukherjee S et al (2017) Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium–sulfur batteries. Adv Mater 29:1602734. https://doi.org/10.1002/adma.201602734

    Article  CAS  Google Scholar 

  43. Zhao W, Lei Y, Zhu Y et al (2021) Hierarchically structured Ti3C2T MXene paper for Li–S batteries with high volumetric capacity. Nano Energy 86:106120. https://doi.org/10.1016/j.nanoen.2021.106120

    Article  CAS  Google Scholar 

  44. Naguib M, Mashtalir O, Carle J et al (2012) Two-dimensional transition metal carbides. ACS Nano 6:1322–1331. https://doi.org/10.1021/nn204153h

    Article  CAS  Google Scholar 

  45. Xu M, Liang L, Qi J, Wu T, Zhou D, Xiao Z (2021) Intralayered ostwald ripening-induced self-catalyzed growth of cnts on mxene for robust lithium–sulfur batteries. Small 17:2007446. https://doi.org/10.1002/smll.202007446

    Article  CAS  Google Scholar 

  46. Bat-Erdene M, Batmunkh M, Shearer CJ et al (2017) Efficient and fast synthesis of few-layer black phosphorus via microwave-assisted liquid-phase exfoliation. Small Methods 1:1700260. https://doi.org/10.1002/smtd.201700260

    Article  CAS  Google Scholar 

  47. Nicolosi V, Chhowalla M, Kanatzidis Mercouri G, Strano Michael S, Coleman Jonathan N (2013) Liquid exfoliation of layered materials. Sci 340:1226419. https://doi.org/10.1126/science.1226419

    Article  CAS  Google Scholar 

  48. Ghazi ZA, He X, Khattak AM et al (2017) MoS2/celgard separator as efficient polysulfide barrier for long-life lithium–sulfur batteries. Adv Mater. https://doi.org/10.1002/adma.201606817

    Article  Google Scholar 

  49. Mao L, Mao J (2020) Ultralow-decay lithium–sulfur batteries: modified separator with graphene/ZnS(en)0.5 exfoliation nanosheets. J Solid State Chem 290:121555. https://doi.org/10.1016/j.jssc.2020.121555

    Article  CAS  Google Scholar 

  50. Lee DK, Chae Y, Yun H, Ahn CW, Lee JW (2020) CO2-oxidized Ti3C2Tx–1 MXenes components for lithium–sulfur batteries: suppressing the shuttle phenomenon through physical and chemical adsorption. ACS Nano 14:9744–9754. https://doi.org/10.1021/acsnano.0c01452

    Article  CAS  Google Scholar 

  51. Lim W-G, Mun Y, Cho A et al (2018) Synergistic effect of molecular-type electrocatalysts with ultrahigh pore volume carbon microspheres for lithium–sulfur batteries. ACS Nano 12:6013–6022. https://doi.org/10.1021/acsnano.8b02258

    Article  CAS  Google Scholar 

  52. Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443:63–66. https://doi.org/10.1038/nature05118

    Article  CAS  Google Scholar 

  53. Fang LZ, Feng ZE, Cheng L, Winans RE, Li T (2020) Design principles of single atoms on carbons for lithium–sulfur batteries. Small Methods. https://doi.org/10.1002/smtd.202000315

    Article  Google Scholar 

  54. Yang J, Kang DW, Kim H, Park JH, Choi WY, Lee JW (2021) Fundamental role of Fe–N–C active sites in a CO2-derived ultra-porous carbon electrode for inhibiting shuttle phenomena in Li–S batteries. J Mater Chem A 9:23660–23674. https://doi.org/10.1039/D1TA07415F

    Article  CAS  Google Scholar 

  55. Zhang B, Fan TJ, Xie N, Nie GH, Zhang H (2019) Versatile applications of metal single-atom @ 2D material nanoplatforms. Adv Sci. https://doi.org/10.1002/advs.201901787

    Article  Google Scholar 

  56. Sun SH, Zhang GX, Gauquelin N et al (2013) Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci Rep. https://doi.org/10.1038/srep01775

    Article  Google Scholar 

  57. Sun QM, Wang N, Zhang TJ et al (2019) Zeolite-encaged single-atom rhodium catalysts: highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes. Angew Chem Int Ed 58:18570–18576. https://doi.org/10.1002/anie.201912367

    Article  CAS  Google Scholar 

  58. Yi MJ, Li N, Lu BB, Li L, Zhu ZY, Zhang JH (2021) Single-atom Pt decorated in heteroatom (N, B, and F)-doped ReS2 Grown on Mo2CTx for efficient pH-universal hydrogen evolution reaction and flexible Zn-air batteries. Energy Storage Mater 42:418–429. https://doi.org/10.1016/j.ensm.2021.07.048

    Article  Google Scholar 

  59. Cao XX, Mirjalili A, Wheeler J, Xie W, Jang BWL (2015) Investigation of the preparation methodologies of Pd-Cu single atom alloy catalysts for selective hydrogenation of acetylene. Front Chem Sci Eng 9:442–449. https://doi.org/10.1007/s11705-015-1547-x

    Article  CAS  Google Scholar 

  60. Song C-L, Li Z-H, Ma L-Y et al (2021) Single-atom zinc and anionic framework as janus separator coatings for efficient inhibition of lithium dendrites and shuttle effect. ACS Nano 15:13436–13443. https://doi.org/10.1021/acsnano.1c03876

    Article  CAS  Google Scholar 

  61. Liu QT, Liu XF, Zheng LR, Shui JL (2018) The solid-phase synthesis of an Fe–N–C electrocatalyst for high-power proton-exchange membrane fuel cells. Angew Chem Int Ed 57:1204–1208. https://doi.org/10.1002/anie.201709597

    Article  CAS  Google Scholar 

  62. Zhou P, Li N, Chao Y et al (2019) Thermolysis of noble metal nanoparticles into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew Chem Int Ed 58:14184–14188. https://doi.org/10.1002/anie.201908351

    Article  CAS  Google Scholar 

  63. Ding S, Chen H-A, Mekasuwandumrong O et al (2021) High-temperature flame spray pyrolysis induced stabilization of Pt single-atom catalysts. Appl Catal B 281:119471. https://doi.org/10.1016/j.apcatb.2020.119471

    Article  CAS  Google Scholar 

  64. Deng D, Chen X, Yu L et al (2015) A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci Adv 1:e1500462. https://doi.org/10.1126/sciadv.1500462

    Article  Google Scholar 

  65. Jiang R, Jiang M, Huang Z, Wang J, Kuang Y, Fu C (2020) Constructing light-weight polar boron-doped carbon nitride nanosheets with increased active sites and conductivity for high performance lithium–sulfur batteries. Int J Hydrog Energy 45:14940–14952. https://doi.org/10.1016/j.ijhydene.2020.03.232

    Article  CAS  Google Scholar 

  66. Zhang J, Ma W, Feng Z et al (2019) P-doped BN nanosheets decorated graphene as the functional interlayer for Li–S batteries. J Energy Chem 39:54–60. https://doi.org/10.1016/j.jechem.2019.01.016

    Article  Google Scholar 

  67. Gong Y, Fu C, Dong A, Zhou H, Li H, Kuang Y (2018) Polar Ultrathin self-doping carbon nitride nanosheets with intrinsic polysulfide adsorption for high performance lithium–sulfur batteries. Batter Supercaps 1:192–201. https://doi.org/10.1002/batt.201800040

    Article  CAS  Google Scholar 

  68. Cui Z, Mei T, Yao J et al (2018) Cabbage-like nitrogen-doped graphene/sulfur composite for lithium–sulfur batteries with enhanced rate performance. J Alloys Compd 753:622–629. https://doi.org/10.1016/j.jallcom.2018.04.234

    Article  CAS  Google Scholar 

  69. Wu F, Qian J, Wu W et al (2016) Boron-doped microporous nano carbon as cathode material for high-performance Li–S batteries. Nano Res 10:426–436. https://doi.org/10.1007/s12274-016-1303-7

    Article  CAS  Google Scholar 

  70. Tian Y, Zhang X, Zhang Y et al (2021) Cobalt-doped oxygen-deficient titanium dioxide coated by carbon layer as high-performance sulfur host for Li/S batteries. J Alloys Compd 861:157969. https://doi.org/10.1016/j.jallcom.2020.157969

    Article  CAS  Google Scholar 

  71. Wu H, Xia L, Ren J et al (2018) A multidimensional and nitrogen-doped graphene/hierarchical porous carbon as a sulfur scaffold for high performance lithium sulfur batteries. Electrochim Acta 278:83–92. https://doi.org/10.1016/j.electacta.2018.05.032

    Article  CAS  Google Scholar 

  72. Xu J, Fan H, Su D, Wang G (2018) Nitrogen doped yolk-shell carbon spheres as cathode host for lithium–sulfur battery. J Alloys Compd 747:283–292. https://doi.org/10.1016/j.jallcom.2018.02.225

    Article  CAS  Google Scholar 

  73. Ren YX, Zhao TS, Liu M, Wei L, Zhang RH (2017) High-performance nitrogen-doped titania nanowire decorated carbon cloth electrode for lithium-polysulfide batteries. Electrochim Acta 242:137–145. https://doi.org/10.1016/j.electacta.2017.04.171

    Article  CAS  Google Scholar 

  74. Ma X, Ning G, Wang Y et al (2018) S-doped mesoporous graphene microspheres: a high performance reservoir material for Li S batteries. Electrochim Acta 269:83–92. https://doi.org/10.1016/j.electacta.2018.02.163

    Article  CAS  Google Scholar 

  75. Wang M, Fan L, Sun X et al (2020) Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li–S battery. ACS Energy Lett 5:3041–3050. https://doi.org/10.1021/acsenergylett.0c01564

    Article  CAS  Google Scholar 

  76. Zhao Q, Zhao K, Ji G et al (2019) High sulfur loading, rGO-linked and polymer binder-free cathodes based on rGO wrapped N, P-codoped mesoporous carbon as sulfur host for Li–S batteries. Chem Eng J 361:1043–1052. https://doi.org/10.1016/j.cej.2018.12.153

    Article  CAS  Google Scholar 

  77. Fang X, Jiang Y, Zhang K, Hu G, Hu W (2021) MOF-derived fluorine and nitrogen co-doped porous carbon for an integrated membrane in lithium–sulfur batteries. New J Chem 45:2361–2365. https://doi.org/10.1039/d0nj05912a

    Article  CAS  Google Scholar 

  78. Babu DB, Ramesha K (2019) Melamine assisted liquid exfoliation approach for the synthesis of nitrogen doped graphene-like carbon nano sheets from bio-waste bagasse material and its application towards high areal density Li–S batteries. Carbon 144:582–590. https://doi.org/10.1016/j.carbon.2018.12.101

    Article  CAS  Google Scholar 

  79. Liang Y, Deng N, Ju J et al (2018) Facilitation of lithium polysulfides adsorption by nitrogen doped carbon nanofibers with 3D interconnected pore structures for high-stable lithium–sulfur batteries. Electrochim Acta 281:257-265. https://doi.org/10.1016/j.electacta.2018.05.180

    Article  CAS  Google Scholar 

  80. Xu P, Liu H, Zeng Q et al (2021) Yolk-shell nano ZnO@Co-doped NiO with efficient polarization adsorption and catalysis performance for superior lithium–sulfur batteries. Small 17:e2005227. https://doi.org/10.1002/smll.202005227

    Article  CAS  Google Scholar 

  81. Yi Y, Li H, Chang H et al (2019) Few-layer boron nitride with engineered nitrogen vacancies for promoting conversion of polysulfide as a cathode matrix for lithium–sulfur batteries. Chem-Eur J 25:8112–8117. https://doi.org/10.1002/chem.201900884

    Article  CAS  Google Scholar 

  82. Du M, Tian X, Ran R, Zhou W, Liao K, Shao Z (2020) Tuning nitrogen in graphitic carbon nitride enabling enhanced performance for polysulfide confinement in Li–S batteries. Energy Fuels 34:11557-11564. https://doi.org/10.1021/acs.energyfuels.0c02278

    Article  CAS  Google Scholar 

  83. Sun Z, Lin L, Wei Y et al (2019) An in situ constructed topological rich vacancy-defect nitrogen-doped nanocarbon as a highly-effective metal-free oxygen catalyst for Li–O2 batteries. J Mater Chem A 7:21918-21926. https://doi.org/10.1039/c9ta07806a

    Article  CAS  Google Scholar 

  84. Tian Y, Zhao Y, Zhang Y, Ricardez-Sandoval L, Wang X, Li J (2019) Construction of oxygen-deficient La(OH)3 nanorods wrapped by reduced graphene oxide for polysulfide trapping toward high-performance lithium/sulfur batteries. ACS Appl Mater Inter 11:23271-23279. https://doi.org/10.1021/acsami.9b06904

    Article  CAS  Google Scholar 

  85. Wang Y, Zhang R, Chen J et al (2019) Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering. Adv Energy Mater 9:1900953. https://doi.org/10.1002/aenm.201900953

    Article  CAS  Google Scholar 

  86. Tao X, Wang J, Ying Z et al (2014) Strong sulfur binding with conducting Magneli-phase Ti(n)O2(n-1) nanomaterials for improving lithium–sulfur batteries. Nano Lett 14:5288-5294. https://doi.org/10.1021/nl502331f

    Article  CAS  Google Scholar 

  87. Wang HC, Fan CY, Zheng YP et al (2017) Oxygen-deficient titanium dioxide nanosheets as more effective polysulfide reservoirs for lithium–sulfur batteries. Chem 23:966-9673. https://doi.org/10.1002/chem.201701580

    Article  CAS  Google Scholar 

  88. Wang H-E, Yin K, Qin N et al (2019) Oxygen-deficient titanium dioxide as a functional host for lithium–sulfur batteries. J Mater Chem A 7:10346-10353. https://doi.org/10.1039/c9ta01598a

    Article  CAS  Google Scholar 

  89. Li Q, Zhao Y, Liu H et al (2019) Dandelion-like Mn/Ni co-doped CoO/C hollow microspheres with oxygen vacancies for advanced lithium storage. ACS Nano 13:11921-11934. https://doi.org/10.1021/acsnano.9b06005

    Article  CAS  Google Scholar 

  90. Zhao J, Zhao D, Li L et al (2020) Defect-rich, mesoporous cobalt sulfide hexagonal nanosheets as superior sulfur hosts for high-rate, long-cycle rechargeable lithium–sulfur batteries. J Phys Chem C 124:12259-12268. https://doi.org/10.1021/acs.jpcc.0c02324

    Article  CAS  Google Scholar 

  91. Abraham A, Wang L, Quilty CD et al (2020) Defect control in the synthesis of 2 D MoS2 nanosheets: polysulfide trapping in composite sulfur cathodes for Li–S batteries. Chemsuschem 13:1517-1528. https://doi.org/10.1002/cssc.201903028

    Article  CAS  Google Scholar 

  92. Pan Y (2017) Insight into sulfur vacancy-induced insulator to metal transition of Li2S. Funct Mater Lett 10:1750067. https://doi.org/10.1142/s1793604717500679

    Article  CAS  Google Scholar 

  93. Zhang J, Zhang J, Liu K et al (2019) Abundant defects-induced interfaces enabling effective anchoring for polysulfides and enhanced kinetics in lean electrolyte lithium–sulfur batteries. ACS Appl Mater Inter 11:46767-46775. https://doi.org/10.1021/acsami.9b15638

    Article  CAS  Google Scholar 

  94. Huang G, Yang Y, Sun H et al (2017) Defective ZnCo2O4 with Zn vacancies: synthesis, property and electrochemical application. J Alloys Compd 724:1149-1156. https://doi.org/10.1016/j.jallcom.2017.07.136

    Article  CAS  Google Scholar 

  95. Zhang Y, Li G, Wang J et al (2020) Hierarchical defective Fe3−xC@C Hollow microsphere enables fast and long-lasting lithium–sulfur batteries. Adv Funct Mater 30:2001165. https://doi.org/10.1002/adfm.202001165

    Article  CAS  Google Scholar 

  96. Wang X, Li X, Zhang L et al (2009) N-doping of graphene through electrothermal reactions with ammonia. Sci 324:768-771. https://doi.org/10.1126/science.1170335

    Article  CAS  Google Scholar 

  97. Lahiri J, Lin Y, Bozkurt P, Oleynik M II, Batzill, (2010) An extended defect in graphene as a metallic wire. Nat Nanotechnol 5:326-329. https://doi.org/10.1038/nnano.2010.53

    Article  CAS  Google Scholar 

  98. Cai W, Song Y, Fang Y et al (2020) Defect engineering on carbon black for accelerated Li–S chemistry. Nano Res 13:3315-3320. https://doi.org/10.1007/s12274-020-3009-0

    Article  CAS  Google Scholar 

  99. Wang D, Wang K, Wu H et al (2018) CO2 oxidation of carbon nanotubes for lithium–sulfur batteries with improved electrochemical performance. Carbon 132:370-379. https://doi.org/10.1016/j.carbon.2018.02.048

    Article  CAS  Google Scholar 

  100. Han W, Zhao Y, Dong F, Zhang G, Lu G, Tang Z (2017) Effect of the well-designed functional groups and defects of porous carbon spheres on the catalytic oxidation performance. Micro Meso Mater 250:35-42. https://doi.org/10.1016/j.micromeso.2017.05.004

    Article  CAS  Google Scholar 

  101. Quinlan RA, Cai M, Outlaw RA, Butler SM, Miller JR, Mansour AN (2013) Investigation of defects generated in vertically oriented graphene. Carbon 64:92-100. https://doi.org/10.1016/j.carbon.2013.07.040

    Article  CAS  Google Scholar 

  102. Sridhar V, Kim H-J, Jung J-H, Lee C, Park S, Oh I-K (2012) Defect-engineered three-dimensional graphene–nanotube–palladium nanostructures with ultrahigh capacitance. ACS Nano 6:10562-10570. https://doi.org/10.1021/nn3046133

    Article  CAS  Google Scholar 

  103. Wang J, Wang W, Zhang Y, Bakenov Z, Zhao Y, Wang X (2019) Synthesis of highly defective hollow double-shelled Co3O4x microspheres as sulfur host for high-performance lithium–sulfur batteries. Mater Lett 255:126581. https://doi.org/10.1016/j.matlet.2019.126581

    Article  CAS  Google Scholar 

  104. Kim H, Zhang JY, Raghavan S, Stemmer S (2016) Direct observation of Sr vacancies in SrTiO3 by quantitative scanning transmission electron microscopy. Phys Rev X 6:041063. https://doi.org/10.1103/PhysRevX.6.041063

    Article  Google Scholar 

  105. Sakai Y, Ehara S (2001) Scanning tunneling microscopy/spectroscopy study of point defects on TiO2(110)-(1 × 1) surface. Jpn J Appl Phy 40(Part 2, No. 7B):L773–L775. https://doi.org/10.1143/JJAP.40.L773

    Article  CAS  Google Scholar 

  106. Li Z, Zhou C, Hua J et al (2020) Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv Mater 32:e1907444. https://doi.org/10.1002/adma.201907444

    Article  CAS  Google Scholar 

  107. Liu Y, Ma S, Liu L et al (2020) Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li-S batteries. Adv Funct Mater 30:2002462. https://doi.org/10.1002/adfm.202002462

    Article  CAS  Google Scholar 

  108. Song Y, Sun Z, Fan Z et al (2020) Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li–S chemistry. Nano Energy 70:104555. https://doi.org/10.1016/j.nanoen.2020.104555

    Article  CAS  Google Scholar 

  109. Wang W, Zhao Y, Zhang Y et al (2020) Defect-rich multishelled Fe-doped Co3O4 hollow microspheres with multiple spatial confinements to facilitate catalytic conversion of polysulfides for high-performance Li–S batteries. ACS Appl Mater Inter 12:12763–12773. https://doi.org/10.1021/acsami.9b21853

    Article  CAS  Google Scholar 

  110. Glatzel T, Sadewasser S, Shikler R, Rosenwaks Y, Lux-Steiner MC (2003) Kelvin probe force microscopy on III–V semiconductors: the effect of surface defects on the local work function. Mater Sci Eng B 102:138–142. https://doi.org/10.1016/s0921-5107(03)00020-5

    Article  Google Scholar 

  111. Kumar M, Som T (2015) Structural defect-dependent resistive switching in Cu-O/Si studied by Kelvin probe force microscopy and conductive atomic force microscopy. Nanotechnology 26:345702. https://doi.org/10.1088/0957-4484/26/34/345702

    Article  CAS  Google Scholar 

  112. Rodriguez RD, Khan Z, Ma B et al (2019) Ion-Induced defects in graphite: a combined Kelvin probe and Raman microscopy investigation. Phys Status Solidi (a) 216:1900055. https://doi.org/10.1002/pssa.201900055

    Article  CAS  Google Scholar 

  113. Chen R, Zhao T, Lu J et al (2013) Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries. Nano Lett 13:4642–4649. https://doi.org/10.1021/nl4016683

    Article  CAS  Google Scholar 

  114. Shi L, Fang H, Yang X et al (2021) Fe-cation doping in NiSe2 as an effective method of electronic structure modulation towards high-performance lithium–sulfur batteries. Chemsuschem. https://doi.org/10.1002/cssc.202100216

    Article  Google Scholar 

  115. Lin H, Zhang S, Zhang T et al (2019) Simultaneous cobalt and phosphorous doping of MoS2 for Improved catalytic performance on polysulfide conversion in lithium–sulfur batteries. Adv Energy Mater 9:1902096. https://doi.org/10.1002/aenm.201902096

    Article  CAS  Google Scholar 

  116. Chen S, Pan Y (2021) Influence of group III and IV elements on the hydrogen evolution reaction of MoS2 disulfide. J Phys Chem C 125:11848–11856. https://doi.org/10.1021/acs.jpcc.1c03152

    Article  CAS  Google Scholar 

  117. Li Q, Liu Y, Yang L et al (2021) N, O co-doped chlorella-based biomass carbon modified separator for lithium-sulfur battery with high capacity and long cycle performance. J Colloid Interface Sci 585:43–50. https://doi.org/10.1016/j.jcis.2020.11.084

    Article  CAS  Google Scholar 

  118. Zhou X, Liao Q, Tang J, Bai T, Chen F, Yang J (2016) A high-level N-doped porous carbon nanowire modified separator for long-life lithium–sulfur batteries. J Electroanal Chem 768:55–61. https://doi.org/10.1016/j.jelechem.2016.02.037

    Article  CAS  Google Scholar 

  119. Wei H, Rodriguez EF, Best AS, Hollenkamp AF, Chen D, Caruso RA (2017) Chemical bonding and physical trapping of sulfur in mesoporous Magnéli Ti4O7 microspheres for high-performance Li–S battery. Adv Energy Mater 7:1601616. https://doi.org/10.1002/aenm.201601616

    Article  CAS  Google Scholar 

  120. Zhang Z, Wang G, Lai Y, Li J, Zhang Z, Chen W (2015) Nitrogen-doped porous hollow carbon sphere-decorated separators for advanced lithium–sulfur batteries. J Power Sources 300:157–163. https://doi.org/10.1016/j.jpowsour.2015.09.067

    Article  CAS  Google Scholar 

  121. Jand SP, Chen Y, Kaghazchi P (2016) Comparative theoretical study of adsorption of lithium polysulfides (Li2Sx) on pristine and defective graphene. J Power Sources 308:166–171. https://doi.org/10.1016/j.jpowsour.2016.01.062

    Article  CAS  Google Scholar 

  122. Li F, Su Y, Zhao J (2016) Shuttle inhibition by chemical adsorption of lithium polysulfides in B and N co-doped graphene for Li-S batteries. Phys Chem Chem Phys 18:25241–25248. https://doi.org/10.1039/c6cp04071c

    Article  CAS  Google Scholar 

  123. Zeng P, Huang L, Zhang X, Zhang R, Wu L, Chen Y (2018) Long-life and high-areal-capacity lithium–sulfur batteries realized by a honeycomb-like N, P dual-doped carbon modified separator. Chem Eng J 349:327–337. https://doi.org/10.1016/j.cej.2018.05.096

    Article  CAS  Google Scholar 

  124. Gao X, Yang X, Li M et al (2019) Cobalt-doped SnS2 with dual active centers of synergistic absorption-catalysis effect for high-S loading Li–S batteries. Adv Funct Mater 29:1806724. https://doi.org/10.1002/adfm.201806724

    Article  CAS  Google Scholar 

  125. Wang J, Jia L, Liu H et al (2020) Multi-ion modulated single-step synthesis of a nanocarbon embedded with a defect-rich nanoparticle catalyst for a high loading sulfur cathode. ACS Appl Mater Inter 12:12727–12735. https://doi.org/10.1021/acsami.9b21509

    Article  CAS  Google Scholar 

  126. Ci H, Cai J, Ma H et al (2020) Defective VSe2-graphene heterostructures enabling in situ electrocatalyst evolution for lithium–sulfur batteries. ACS Nano 14:11929–11938. https://doi.org/10.1021/acsnano.0c05030

    Article  CAS  Google Scholar 

  127. Li J, Chen Y, Zhang S et al (2020) Coordinating adsorption and catalytic activity of polysulfide on hierarchical integrated electrodes for high-performance flexible Li–S batteries. ACS Appl Mater Inter 12:49519–49529. https://doi.org/10.1021/acsami.0c10453

    Article  CAS  Google Scholar 

  128. Su F, Yi Z, Xie L et al (2020) Critical role of surface defects in the controllable deposition of Li2S on graphene: from molecule to crystallite. ACS Appl Mater Inter 12:53435–53445. https://doi.org/10.1021/acsami.0c14287

    Article  CAS  Google Scholar 

  129. Wu R, Chen S, Deng J et al (2018) Hierarchically porous nitrogen-doped carbon as cathode for lithium–sulfur batteries. J Energy Chem 27:1661–1667. https://doi.org/10.1016/j.jechem.2018.02.010

    Article  Google Scholar 

  130. Ren W, Ma W, Zhang S, Tang B (2018) Nitrogen-doped carbon fiber foam enabled sulfur vapor deposited cathode for high performance lithium sulfur batteries. Chem Eng J 341:441–449. https://doi.org/10.1016/j.cej.2018.02.057

    Article  CAS  Google Scholar 

  131. Xu Z, Fan M, Wang J, Zhang F, Lin W, Zhang H (2020) Trace iron-decorated nitrogen/sulfur co-doped hierarchically porous carbon for oxygen reduction and lithium–sulfur batteries. ACS Appl Energy Mater 3:2719-2726. https://doi.org/10.1021/acsaem.9b02388

    Article  CAS  Google Scholar 

  132. Xu J, Su D, Zhang W, Bao W, Wang G (2016) A nitrogen–sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium–sulfur batteries. J Mater Chem A 4:17381–17393. https://doi.org/10.1039/c6ta05878g

    Article  CAS  Google Scholar 

  133. Li Z, Li C, Ge X et al (2016) Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 23:15–26. https://doi.org/10.1016/j.nanoen.2016.02.049

    Article  CAS  Google Scholar 

  134. Cheng Z, Wang Y, Zhang W, Xu M (2020) Boosting polysulfide conversion in lithium–sulfur batteries by cobalt-doped vanadium nitride microflowers. ACS Appl Energy Mater 3:4523–4530. https://doi.org/10.1021/acsaem.0c00205

    Article  CAS  Google Scholar 

  135. Zhang D, Li Z, Li Y et al (2021) Hollow urchin-like Al-doped α-MnO2x as advanced sulfur host for high-performance lithium–sulfur batteries. Mater Lett 285:129135. https://doi.org/10.1016/j.matlet.2020.129135

    Article  CAS  Google Scholar 

  136. Zhao Y, Cai W, Fang Y, Ao H, Zhu Y, Qian Y (2019) Sulfur-deficient TiS2−x for promoted polysulfide redox conversion in lithium–sulfur batteries. ChemElectroChem 6:2231–2237. https://doi.org/10.1002/celc.201900269

    Article  CAS  Google Scholar 

  137. Zhen M, Guo S-Q, Shen B (2020) Constructing defect-rich MoS2/N-doped carbon nanosheets for catalytic polysulfide conversion in lithium–sulfur batteries. ACS Sustain Chem Eng 8:13318–13327. https://doi.org/10.1021/acssuschemeng.0c03887

    Article  CAS  Google Scholar 

  138. Tong Z, Huang L, Liu H et al (2021) Defective graphitic carbon nitride modified separators with efficient polysulfide traps and catalytic sites for fast and reliable sulfur electrochemistry. Adv Funct Mater 31:2010455. https://doi.org/10.1002/adfm.202010455

    Article  CAS  Google Scholar 

  139. Fan X, Chen S, Gong W et al (2021) A conjugated porous polymer complexed with a single-atom cobalt catalyst as an electrocatalytic sulfur host for enhancing cathode reaction kinetics. Energy Storage Mater 41:14–23. https://doi.org/10.1016/j.ensm.2021.05.043

    Article  Google Scholar 

  140. Han Z, Zhao S, Xiao J et al (2021) Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li–S batteries. Adv Mater 33:2105947. https://doi.org/10.1002/adma.202105947

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Mao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, L., Mao, J. Active site construction to boost electrochemical property for Li–S batteries: a review. J Mater Sci 57, 7131–7154 (2022). https://doi.org/10.1007/s10853-022-07082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07082-2

Navigation