Skip to main content
Log in

The effect of Ta on oxidation resistance of TiC/hastelloy composites

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The oxidation resistance is pivotal to TiC/hastelloy composites applied for high-temperature structural components. In this paper, the effect of Ta on oxidation resistance of TiC/hastelloy composites was investigated. Composites with different Ta contents were prepared by reactive infiltration method, and the oxidation test was held at 800 °C for 100 h in air. The result indicates that as Ta content increases from 1 to 8 wt%, the mass gain decreases from 0.48 to 0.30 mg cm−2, demonstrating that the oxidation resistance of composites is optimized. The oxide scale changes from sandwich structure to thinner bilayer with CrTaO4. Ta decreases the initial oxidation rate of TiC and metal matrix, while Ta promotes the formation of continuous Cr2O3 layer. After oxidation, Ta mainly dopes in TiO2 and Cr2O3 with 1 wt% Ta, while CrTaO4 is found in oxide scale with 8 wt% Ta. Ta-doped TiO2 inhibits the inward diffusion of O, and CrTaO4 suppresses the outward diffusion of Ni, Ti and Cr. Therefore, the oxide scale with CrTaO4 on TiC/hastelloy composites exhibits better protective effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.

References

  1. Hu W, Huang Z, Yu Q, Wang Y, Jiao Y, Zhou Y, Zhai H (2020) Investigation on high temperature mechanical behaviors of TiC-γ′ reinforced Ni composite. Met Mater Int. https://doi.org/10.1007/s12540-020-00615-x

    Article  Google Scholar 

  2. Chen L, Sun Y, Li L, Ren X (2020) Effect of heat treatment on the microstructure and high temperature oxidation behavior of TiC/Inconel 625 nanocomposites fabricated by selective laser melting. Corros Sci 169:108606. https://doi.org/10.1016/j.corsci.2020.108606

    Article  CAS  Google Scholar 

  3. Borkar T, Sosa JM, Hwang JY, Scharf TW, Tiley J, Fraser HL, Banerjee R (2014) Laser-deposited in situ TiC-reinforced nickel matrix composites: 3D microstructure and tribological properties. JOM. https://doi.org/10.1007/s11837-014-0907-1

    Article  Google Scholar 

  4. Qi Q, Liu Y, Huang ZR (2015) Promising metal matrix composites (TiC/Ni-Cr) for intermediate-temperature solid oxide fuel cell (SOFC) interconnect applications. Scr Mater 109:56–60. https://doi.org/10.1016/j.scriptamat.2015.07.017

    Article  CAS  Google Scholar 

  5. Storozhenko MS, Umanskii AP, Lavrenko VA, Chuprov SS, Kostenko AD (2012) Composites based on TiB2–SiC with a nickel–chromium matrix. Powder Metall Met Ceram 50:719–725. https://doi.org/10.1007/s11106-012-9381-x

    Article  CAS  Google Scholar 

  6. Voitovich VB (1997) Mechanism of the high temperature oxidation of titanium carbide. High Temp Mater Processes 16:243–254. https://doi.org/10.1515/HTMP.1997.16.4.243

    Article  CAS  Google Scholar 

  7. Baillet J, Gavarini S, Millardpinard N, Garnier V, Peaucelle C, Jaurand X, Cardinal S, Duranti A, Bernard C, Rapegno R (2016) Influence of grain size and microstructure on oxidation rate and mechanism in sintered titanium carbide under high temperature and low oxygen partial pressure. J Eur Ceram Soc 36:3099–3111. https://doi.org/10.1016/j.jeurceramsoc.2016.04.025

    Article  CAS  Google Scholar 

  8. Boatemaa L, Brouwer JC, Der Zwaag SV, Sloof WG (2018) The effect of the TiC particle size on the preferred oxidation temperature for self-healing of oxide ceramic matrix materials. J Mater Sci 53:5973–5986. https://doi.org/10.1007/s10853-017-1973-x

    Article  CAS  Google Scholar 

  9. Mallikarjuna HT, Richards NL, Caley WF (2017) Isothermal oxidation comparison of three Ni-based superalloys. J Mater Eng Perform 26:2014–2023. https://doi.org/10.1007/s11665-017-2630-x

    Article  CAS  Google Scholar 

  10. Schmucker E, Petitjean C, Martinelli L, Panteix PJ, Ben Lagha S, Vilasi M (2016) Oxidation of Ni-Cr alloy at intermediate oxygen pressures I Diffusion mechanisms through the oxide layer. Corrosion Sci 111:474–485. https://doi.org/10.1016/j.corsci.2016.05.025

    Article  CAS  Google Scholar 

  11. Schmucker E, Petitjean C, Martinelli L, Panteix PJ, Lagha B, Vilasi M (2016) Oxidation of Ni-Cr alloy at intermediate oxygen pressures. II. Towards the lifetime prediction of alloys. Corros Sci 111:467–473. https://doi.org/10.1016/j.corsci.2016.05.024

    Article  CAS  Google Scholar 

  12. Xu Y, Gu Y, Yan J, Sun F (2016) Oxidation behavior of Ni-based alloys effect of alloying additions. Corrosion 73:247–255. https://doi.org/10.5006/2192

    Article  CAS  Google Scholar 

  13. Pang Y, Xie H, Koc R (2007) Investigation of electrical conductivity and oxidation behavior of TiC and TiN based cermets for SOFC interconnect application. ECS Trans 7:2427–2435. https://doi.org/10.1149/1.2729365

    Article  CAS  Google Scholar 

  14. Cai KF, Nan CW, Yuan RZ, Min XM (1996) The flexural strength at high temperature and oxidation behaviour of composite (Nb, Ti) C-Ni composite. Ceram Int 22:167–170

    Article  CAS  Google Scholar 

  15. Fu Z, Kong JH, Gajjala SR, Koc R (2018) Sintering, mechanical, and oxidation properties of TiC-Ni-Mo cermets obtained from ultra-fine TiC powders. J Alloys Compd 751:316–323. https://doi.org/10.1016/j.jallcom.2018.04.124

    Article  CAS  Google Scholar 

  16. Qi Q, Liu Y, Wang LJ, Huang J, Xin XS, Gai LL, Huang ZR (2017) The oxidation resistance optimization of titanium carbide/hastelloy (Ni-based alloy) composites applied for intermediate-temperature solid oxide fuel cell interconnects. J Power Sources 359:626–633. https://doi.org/10.1016/j.jpowsour.2017.05.114

    Article  CAS  Google Scholar 

  17. Qi Q, Wang LJ, Liu Y, Huang ZR (2018) Interfacial effect on oxidation resistance of TiC/hastelloy composites applied for intermediate-temperature solid oxide fuel cell interconnects. Corros Sci 143:292–298. https://doi.org/10.1016/j.corsci.2018.08.042

    Article  CAS  Google Scholar 

  18. Qi Q, Wang LJ, Liu Y, Huang ZR (2018) Oxidation resistance optimization of TiC/hastelloy composites by adding Ta element applied for intermediate temperature solid oxide fuel cell interconnects. J Power Sources 401:1–5. https://doi.org/10.1016/j.jpowsour.2018.08.075

    Article  CAS  Google Scholar 

  19. Ren W, Ouyang F, Ding B, Zhong Y, Yu J, Ren Z, Zhou L (2017) The influence of CrTaO4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850–900 °C. J Alloys Compd 724:565–574. https://doi.org/10.1016/j.jallcom.2017.07.066

    Article  CAS  Google Scholar 

  20. Gorr B, Muller FEH, Schellert S, Christ H, Chen H, Kauffmann A, Heilmaier M (2020) A new strategy to intrinsically protect refractory metal based alloys at ultra high temperatures. Corros Sci 166:108475. https://doi.org/10.1016/j.corsci.2020.108475

    Article  CAS  Google Scholar 

  21. Qi Q, Liu Y, Zhang H, Zhao J, Gai L, Huang Y, Huang Z (2016) The formation mechanism of TiC particles in TiC/Ni composites fabricated by in situ reactive infiltration. J Mater Sci 51:7038–7045. https://doi.org/10.1007/s10853-016-9994-4

    Article  CAS  Google Scholar 

  22. Chicardi E, Córdoba JM, Gotor FJ (2016) Kinetics of high-temperature oxidation of (Ti, Ta) (C, N)-based cermets. Corros Sci 102:168–177. https://doi.org/10.1016/j.corsci.2015.10.006

    Article  CAS  Google Scholar 

  23. Chang JX, Wang D, Zhang G, Lou LH, Zhang J (2017) Interaction of Ta and Cr on Type-I hot corrosion resistance of single crystal Ni-base superalloys. Corros Sci 117:35–42. https://doi.org/10.1016/j.corsci.2017.01.011

    Article  CAS  Google Scholar 

  24. Irving GN, Stringer J, Whittle DP (1975) The oxidation of Co-20% Cr base alloys containing Nb or Ta. Corros Sci 15:337–344. https://doi.org/10.1016/S0010-938X(75)80015-1

    Article  CAS  Google Scholar 

  25. Brenneman J, Wei J, Sun Z, Liu L, Zou G, Zhou Y (2015) Oxidation behavior of GTD111 Ni-based superalloy at 900 °C in air. Corros Sci 100:267–274. https://doi.org/10.1016/j.corsci.2015.07.031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shandong Provincial Natural Science Foundation (ZR2020QE003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Qi.

Ethics declarations

Conflict of interest

There are no conflicts to declare. Qian Qi conceived the research, processed all the results, analyzed the data and wrote the manuscript. Lujie Wang and Ziyan Zhao carried out experiments with the help and guidance of Qian Qi. Yan Liu and Zhengren Huang help to revise the work. All authors have given approval to the final version of the manuscript.

Additional information

Handling Editor: David Balloy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Q., Wang, L., Zhao, Z. et al. The effect of Ta on oxidation resistance of TiC/hastelloy composites. J Mater Sci 56, 11485–11493 (2021). https://doi.org/10.1007/s10853-021-06010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06010-0

Navigation