Skip to main content
Log in

Simple SILAR-synthesized Ni2+-doped polyaniline film for supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It has been recognized that conducting polymers could play a vital role as electrode material in supercapacitor application due to their high conductivity, fast charging, and discharging performance and ease of handling. Here, we prepared Ni2+-doped polyaniline (Ni-PANI) and polyaniline (PANI) films via oxidative chemical polymerization and studied their charge storage properties. A simple, inexpensive Successive Ionic Layer Adsorption and Reaction (SILAR) method was opted to grow composite material films on stainless steel conductor. The morphology and structural behaviour of prepared film electrodes were studied by FT-IR, XRD, and FESEM characterization techniques. The electrochemical properties of Ni-PANI and PANI were carried out in 1 M H2SO4 electrolyte using three-electrode system. Bare PANI showed the maximum specific capacitance of 667.5 F g−1 at current density of 5 mA cm−2. However, the doping of Ni2+ in PANI enhanced the specific capacitance to 1060 F g−1. In addition, this SILAR-synthesized binder-free Ni-PANI film showed good stability of 84% for 3000 CV cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. P.A. Owusu, S. Asumadu-Sarkodie, A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 3, 1167990 (2016). https://doi.org/10.1080/23311916.2016.1167990

    Article  Google Scholar 

  2. C. Wang, L. Zhang, Z. Zhang, R. Zhao, D. Zhao, R. Ma, L. Yin, Layered materials for supercapacitors and batteries: applications and challenges. Prog Mater. Sci. 118, 100763 (2021). https://doi.org/10.1016/j.pmatsci.2020.100763

    Article  CAS  Google Scholar 

  3. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012). https://doi.org/10.1039/C1CS15060J

    Article  CAS  PubMed  Google Scholar 

  4. Z. Zhao, Y. Xie, Electrochemical supercapacitor performance of boron and nitrogen co-doped porous carbon nanowires. J. Power Sources. 400, 264–276 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.032

    Article  CAS  Google Scholar 

  5. L. Lu, Y. Xie, Phosphomolybdic acid cluster bridging carbon dots and polyaniline nanofibers for effective electrochemical energy storage. J. Mater. Sci. 54, 4842–4858 (2019). https://doi.org/10.1007/s10853-018-03185-x

    Article  CAS  Google Scholar 

  6. I. Shown, A. Ganguly, L. Chen, K. Chen, Conducting polymer-based flexible supercapacitor. Energy Sci. Eng. 3, 2–26 (2015). https://doi.org/10.1002/ese3.50

    Article  CAS  Google Scholar 

  7. H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, S. Wang, Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J. Power Sources. 190, 578–586 (2009). https://doi.org/10.1016/j.jpowsour.2009.01.052

    Article  CAS  Google Scholar 

  8. Q. Li, M. Horn, Y. Wang, J. MacLeod, N. Motta, J. Liu, A Review of Supercapacitors Based on Graphene and Redox-Active Organic Materials. Materials 12, 703 (2019). https://doi.org/10.3390/ma12050703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S. Shaheen Shah, S. Oladepo, M. Ali Ehsan, W. Iali, A. Alenaizan, M. Nahid Siddiqui, M. Oyama, A. Al-Betar, M.A. Aziz, Recent Progress in Polyaniline and its Composites for Supercapacitors. Chem. Rec. (2023). https://doi.org/10.1002/tcr.202300105

    Article  PubMed  Google Scholar 

  10. R. Vinodh, R.S. Babu, S. Sambasivam, C.V.V.M. Gopi, S. Alzahmi, H.-J. Kim, A.L.F. de Barros, I.M. Obaidat, Recent advancements of Polyaniline/Metal Organic Framework (PANI/MOF) composite electrodes for supercapacitor applications: a critical review. Nanomaterials 12, 1511 (2022). https://doi.org/10.3390/nano12091511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. N. Çolak, B. Sökmen, Doping of chemically synthesized polyaniline. Des. Monomers Polym. 3, 181–189 (2000). https://doi.org/10.1163/156855500300142870

    Article  Google Scholar 

  12. M.M. Rahman, T. Mahtab, M.Z. Bin Mukhlish, M.O. Faruk, M.M. Rahman, Enhancement of electrical properties of metal doped polyaniline synthesized by different doping techniques. Polym. Bull. 78, 5379–5397 (2021). https://doi.org/10.1007/s00289-020-03389-9

    Article  CAS  Google Scholar 

  13. G. Karthikeyan, S. Sahoo, G.C. Nayak, C.K. Das, Doping effect of polyaniline/MWCNT composites on capacitance and cyclic stability of supercapacitors. J. Nanosci. Nanotechnol. 12, 2704–2710 (2012). https://doi.org/10.1166/jnn.2012.5715

    Article  CAS  PubMed  Google Scholar 

  14. S. Arulmani, J.J. Wu, S. Anandan, Ultrasound promoted transition metal doped polyaniline nanofibers: enhanced electrode material for electrochemical energy storage applications. Ultrason. Sonochem. 51, 469–477 (2019). https://doi.org/10.1016/j.ultsonch.2018.07.006

    Article  CAS  PubMed  Google Scholar 

  15. Y. Xie, X. Sha, Electrochemical cycling stability of nickel (II) coordinated polyaniline. Synth. Met. 237, 29–39 (2018). https://doi.org/10.1016/j.synthmet.2018.01.011

    Article  CAS  Google Scholar 

  16. H. Xu, J. Li, Z. Peng, J. Zhuang, J. Zhang, Investigation of polyaniline films doped with Ni2+ as the electrode material for electrochemical supercapacitors. Electrochim. Acta. 90, 393–399 (2013). https://doi.org/10.1016/j.electacta.2012.12.047

    Article  CAS  Google Scholar 

  17. S.M. Pawar, B.S. Pawar, J.H. Kim, O.-S. Joo, C.D. Lokhande, Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films. Curr. Appl. Phys. 11, 117–161 (2011). https://doi.org/10.1016/j.cap.2010.07.007

    Article  Google Scholar 

  18. H.M. Pathan, C.D. Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bull. Mater. Sci. 27, 85–111 (2004). https://doi.org/10.1007/BF02708491

    Article  CAS  Google Scholar 

  19. N.C. Maile, S.K. Shinde, K.S. Patil, A.V. Fulari, A. Shahzad, D.S. Lee, V.J. Fulari, Capacitive property studies of inexpensive SILAR synthesized polyaniline thin films for supercapacitor application. SN Appl. Sci. 1, 1333 (2019). https://doi.org/10.1007/s42452-019-1403-6

    Article  CAS  Google Scholar 

  20. N.Y. Abu-Thabit, Chemical oxidative polymerization of Polyaniline: a practical Approach for Preparation of Smart Conductive textiles. J. Chem. Educ. 93, 1606–1611 (2016). https://doi.org/10.1021/acs.jchemed.6b00060

    Article  CAS  Google Scholar 

  21. H. Xu, J. Tang, L. Tan, W. Wang, H. Lu, D. Guo, Synthesis and adsorption of Ni(II) on ni(II)-Imprinted Polyaniline supported on Attapulgite modified with 3-Methacryloxypropyltrimethoxysilane. Adsorpt. Sci. Technol. 31, 521–534 (2013). https://doi.org/10.1260/0263-6174.31.6.521

    Article  CAS  Google Scholar 

  22. E. Yagudaeva, A. Vikhrov, Y. Malakhova, Y. Iskandyarova, M. Firsova, A. Prostyakova, A. Korovin, S. Malakhov, A. Nichugovskiy, V. Zubov, D. Kapustin, Tetramer of aniline as a structural analog of polyaniline – promising material for biomedical application. Synth. Met. 274, 116712 (2021). https://doi.org/10.1016/j.synthmet.2021.116712

    Article  CAS  Google Scholar 

  23. D.P. Dubal, S.V. Patil, G.S. Gund, C.D. Lokhande, Polyaniline–polypyrrole nanograined composite via electrostatic adsorption for high performance electrochemical supercapacitors. J. Alloys Compd. 552, 240–247 (2013). https://doi.org/10.1016/j.jallcom.2012.10.031

    Article  CAS  Google Scholar 

  24. D. Ghosh, S. Giri, A. Mandal, C.K. Das, Supercapacitor based on H+ and Ni2+ co-doped polyaniline–MWCNTs nanocomposite: synthesis and electrochemical characterization. RSC Adv. 3, 11676 (2013). https://doi.org/10.1039/c3ra40955d

    Article  CAS  Google Scholar 

  25. I. Šeděnková, M. Trchová, J. Stejskal, Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water – FTIR and Raman spectroscopic studies. Polym. Degrad. Stab. 93, 2147–2157 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.08.007

    Article  CAS  Google Scholar 

  26. S. Tao, B. Hong, Z. Kerong, An infrared and Raman spectroscopic study of polyanilines co-doped with metal ions and H+. Spectrochim Acta Part. Mol. Biomol. Spectrosc. 66, 1364–1368 (2007). https://doi.org/10.1016/j.saa.2006.08.011

    Article  CAS  Google Scholar 

  27. Y.H. Kim, C. Foster, J. Chiang, A.J. Heeger, Localized charged excitations in polyaniline: infrared photoexcitation and protonation studies. Synth. Met. 29, 285–290 (1989). https://doi.org/10.1016/0379-6779(89)90308-1

    Article  Google Scholar 

  28. T. Abdiryim, Z. Xiao-Gang, R. Jamal, Comparative studies of solid-state synthesized polyaniline doped with inorganic acids. Mater. Chem. Phys. 90, 367–372 (2005). https://doi.org/10.1016/j.matchemphys.2004.10.036

    Article  CAS  Google Scholar 

  29. J. Li, M. Cui, Y. Lai, Z. Zhang, H. Lu, J. Fang, Y. Liu, Investigation of polyaniline co-doped with Zn2+ and H+ as the electrode material for electrochemical supercapacitors. Synth. Met. 160, 1228–1233 (2010). https://doi.org/10.1016/j.synthmet.2010.03.014

    Article  CAS  Google Scholar 

  30. C. Yang, C. Chen, Synthesis, characterisation and properties of polyanilines containing transition metal ions. Synth. Met. 153, 133–136 (2005). https://doi.org/10.1016/j.synthmet.2005.07.136

    Article  CAS  Google Scholar 

  31. P.R. Deshmukh, R.N. Bulakhe, S.N. Pusawale, S.D. Sartale, C.D. Lokhande, Polyaniline-RuO2 composite for high performance supercapacitors: Chemical synthesis and properties. RSC Adv. 5, 28687–28695 (2015). https://doi.org/10.1039/c4ra16969g

    Article  CAS  Google Scholar 

  32. Y. Wang, X. Wu, W. Zhang, S. Huang, Facile synthesis of Ni/PANI/RGO composites and their excellent electromagnetic wave absorption properties. Synth. Met. 210, 165–170 (2015). https://doi.org/10.1016/j.synthmet.2015.09.022

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

THB: Conceptualization, methodology, experiments, Writing—original draft, and review and editing. UMC: Performed the characterizations, interpreted the data and calculations, and drafted the manuscript. SSP: Experiments and data curation. JM: Conceptualization, data curation, and Writing—review and editing. VJF: Conceptualization, supervision, and resources.

Corresponding author

Correspondence to Vijay J. Fulari.

Ethics declarations

Competing Interests

Authors declare no conflict of interest.

Ethical approval

This study does not include any human participants.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajantri, T.H., Chougale, U.M., Patil, S.S. et al. Simple SILAR-synthesized Ni2+-doped polyaniline film for supercapacitor application. J Mater Sci: Mater Electron 35, 896 (2024). https://doi.org/10.1007/s10854-024-12434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12434-6

Navigation