Skip to main content
Log in

Porous graphitic carbon sheets with high sulfur loading and dual confinement of polysulfide species for enhanced performance of Li–S batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Micro- and mesoporous graphitic carbon sheets (MGC) were synthesized from jute sticks (bio-waste) and employed as an efficient polysulfide inhibitor for sulfur cathode in a lithium–sulfur battery application. The as-prepared MGC possesses sheet-like morphological characteristics with unique textural properties such as high specific surface area (2047 m2 g−1), large pore volume (1.69 cc3 g−1) and has excellent graphitic carbon structures. Studies were made in order to optimize the sulfur loading into MGC and to modify the polypropylene separator by coating with a thin layer of as-prepared MGC to attain enhanced electrochemical performance. The optimized sulfur loaded MGC/S-2 cathode with modified separator delivered a high initial discharge capacity of 1542 mAh g−1 and retained a discharge capacity of 1016 mAh g−1 after 50 cycles at 0.2 C rate, attributed to high surface area and porosity of MGC, which act as host as well as barrier film that inhibits the migration of dissolved polysulfide species to the anode during the redox process. Furthermore, the novel cell configuration with modified separator renders high sulfur loading up to 9.3 mg cm−2 and the resulting cell delivered a high discharge capacity of 632 mAh g−1 at 0.2 C rate even at 50th cycle.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Barghamadi M, Kapoor A, Wen C (2013) A review on Li–S batteries as a high efficiency rechargeable lithium battery. J Electrochem Soc 160:A1256–A1263

    CAS  Google Scholar 

  2. Liu J, Yang T, Wang D, Lu GQM, Zhao D, Qiao SZ (2013) A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat Commun 4:2798

    Google Scholar 

  3. Li D, Han F, Wang S, Cheng F, Sun Q, Li WC (2013) High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium–sulfur battery. ACS Appl Mater Interfaces 5:2208–2213

    CAS  Google Scholar 

  4. Huang JQ, Liu XF, Zhang Q, Chen CM, Zhao MQ, Zhang SM, Zhu W, Qian WZ, Wei F (2013) Entrapment of sulfur in hierarchical porous graphene for lithium–sulfur batteries with high rate performance from − 40 to 60 °C. Nano Energy 2:314–321

    CAS  Google Scholar 

  5. Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133:18522–18525

    CAS  Google Scholar 

  6. Seh ZW, Li W, Cha JJ, Zheng G, Yang Y, Mcdowell MT, Hsu PC, Cui Y (2013) Sulphur–TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun 4:1331

    Google Scholar 

  7. Chen X, Yuan L, Hao Z, Liu X, Xiang J, Zhang Z, Huang Y, Xie J (2018) Free-standing Mn3O4@CNF/S paper cathodes with high sulfur loading for lithium–sulfur batteries. ACS Appl Mater Interfaces 10:13406–13412

    CAS  Google Scholar 

  8. Guo J, Zhang J, Jiang F, Zhao S, Su Q, Du G (2015) Microporous carbon nanosheets derived from corncobs for lithium–sulfur batteries. Electrochim Acta 176:853–860

    CAS  Google Scholar 

  9. Singhal R, Chung SH, Manthiram A, Kalra V (2015) A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries. J Mater Chem A 3:4530–4538

    CAS  Google Scholar 

  10. Wang X, Wang Z, Chen L (2013) Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium–sulfur battery. J Power Sources 242:65–69

    CAS  Google Scholar 

  11. Cheng XB, Peng HJ, Huang JQ, Zhu L, Yang SH, Liu Y, Zhang HW, Zhu W, Wei F, Zhang Q (2014) Three-dimensional aluminum foam/carbon nanotube scaffolds as long-and short-range electron pathways with improved sulfur loading for high energy density lithium e sulfur batteries. J Power Sources 261:264–270

    CAS  Google Scholar 

  12. Wang X, Gao T, Han F, Ma Z, Zhang Z, Li J, Wang C (2016) Stabilizing high sulfur loading Li–S batteries by chemisorption of polysulfide on three-dimensional current collector. Nano Energy 30:700–708

    CAS  Google Scholar 

  13. Shi L, Zeng F, Cheng X, Ho K, Wang W, Wang A, Jin Z, Wu F, Yang Y (2018) Enhanced performance of lithium–sulfur batteries with high sulfur loading utilizing ion selective MWCNT/SPANI modified separator. Chem Eng J 334:305–312

    CAS  Google Scholar 

  14. Yu M, Ma J, Xie M, Song H, Tian F, Xu S, Zhou Y, Li B, Wu D, Qiu H, Wang R (2017) Freestanding and sandwich-structured electrode material with high areal mass loading for long-life lithium–sulfur batteries. Adv Energy Mater 7:1602347

    Google Scholar 

  15. Wei S, Zhang H, Huang Y, Wang W, Xai Y, Yu Z (2011) Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium–sulfur batteries. Energy Environ Sci 4:736–740

    CAS  Google Scholar 

  16. Moreno N, Caballero A, Herna L, Morales J (2014) Lithium–sulfur batteries with activated carbons derived from olive stones. Carbon 70:241–248

    CAS  Google Scholar 

  17. Zhao S, Li C, Wang W, Zhang H, Gao M, Xiong X, Wang A, Yuan K, Huang Y, Wang F (2013) A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium–sulfur batteries. J Mater Chem A 1:3334–3339

    CAS  Google Scholar 

  18. Chen F, Yang J, Bai T, Long B, Zhou X (2016) Biomass waste-derived honeycomb-like nitrogen and oxygen dual-doped porous carbon for high performance lithium–sulfur batteries. Electrochim Acta 192:99–109

    CAS  Google Scholar 

  19. Zhang J, Xiang J, Dong Z, Liu Y, Wu Y, Xu C, Du G (2014) Biomass derived activated carbon with 3D connected architecture for rechargeable lithium–sulfur batteries. Electrochim Acta 116:146–151

    CAS  Google Scholar 

  20. Wang D, Fu A, Li H, Wang Y, Guo P, Liu J, Zhao XS (2015) Mesoporous carbon spheres with controlled porosity for high-performance lithium–sulfur batteries. J Power Sources 285:469–477

    CAS  Google Scholar 

  21. Jin J, Wen Z, Ma G, Lu Y, Rui K (2014) Mesoporous carbon/sulfur composite with polyaniline coating for lithium sulfur batteries. Solid State Ionics 262:170–173

    CAS  Google Scholar 

  22. Nanaji K, Upadhyayula V, Rao TN, Anandan S (2018) Robust, environmentally benign synthesis of nanoporous graphene sheets from biowaste for ultrafast supercapacitor application. ACS Sustain Chem Eng 7:2516–2529

    Google Scholar 

  23. Agrawal M, Choudhury S, Gruber K, Simon F, Fischer D, Albrecht V, Gobel M, Koller S, Stamm M, Ionov L (2014) Porous carbon materials for Li–S batteries based on resorcinol-formaldehyde resin with inverse opal structure. J Power Sources 261:363–370

    CAS  Google Scholar 

  24. Xu G, Ding B, Shen L, Nie P, Han J, Zhang X (2013) Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium–sulfur battery. J Mater Chem 1:4490–4496

    CAS  Google Scholar 

  25. Shi J, Peng HJ, Zhu L, Zhu W, Zhang Q (2015) Template growth of porous graphene microspheres on layered double oxide catalysts and their applications in lithium–sulfur batteries. Carbon 92:96–105

    CAS  Google Scholar 

  26. Peng HJ, Huang JQ, Zhao MQ, Zhang Q, Cheng XB, Liu XY, Qian WZ, Wei F (2014) Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium–sulfur batteries. Adv Fun Mater 24:2772–2781

    CAS  Google Scholar 

  27. Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6:2667–2673

    CAS  Google Scholar 

  28. Xu J, Su D, Zhang W, Bao W, Wang G (2016) A nitrogen–sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium–sulfur batteries. J Mater Chem A 4:17381–17393

    CAS  Google Scholar 

  29. Tao X, Zhang J, Xia Y, Huang H, Du J, Xiao H, Zhang W, Gan Y (2014) Bio-inspired fabrication of carbon nanotiles for high performance cathode of Li–S batteries. J Mater Chem A 2:2290–2296

    CAS  Google Scholar 

  30. Benitez A, Gonzalez-Tejero M, Caballero A, Morales J (2018) Almond Shell as a microporous carbon source for sustainable cathodes in lithium–sulfur batteries. Materials 11:1428

    Google Scholar 

  31. Balakumar K, Kalaiselvi N (2015) High sulfur loaded carbon aerogel cathode for lithium–sulfur batteries. RSC Adv 5:34008–34018

    CAS  Google Scholar 

  32. Qu Y, Zhang Z, Zhang X, Ren G, Lai Y, Liu Y, Li J (2014) Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium–sulfur batteries. Carbon 84:399–408

    Google Scholar 

  33. Li X, Cao Y, Qi W, Saraf LV, Xiao J, Nie Z, Mietek J, Zhang JG, Schwenzera B, Liu J (2011) Optimization of mesoporous carbon structures for lithium–sulfur battery. J Mater Chem 21:16603–16610

    CAS  Google Scholar 

  34. Lyu Z, Xu D, Yang L, Che R, Feng R, Zhao J, Li Y, Wu Q, Wang X, Hu Z (2015) Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium–sulfur batteries. Nano Energy 12:657–665

    CAS  Google Scholar 

  35. Xu GL, Xu YF, Fang JC, Peng XX, Fu F, Huang L, Li JT, Sun SG (2013) Porous graphitic carbon loading ultra high sulfur as high-performance cathode of rechargeable lithium–sulfur batteries. ACS Appl Mater Interfaces 5:10782–10793

    CAS  Google Scholar 

  36. Wu F, Chen J, Chen R, Wu S, Li L, Chen S, Zhao T (2011) Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J Phys Chem C 115:6057–6063

    CAS  Google Scholar 

  37. Stoeck U, Balach J, Klose J, Wadewitz D, Ahrens E, Eckert J, Giebeler L (2016) Reconfiguration of lithium sulphur batteries: enhancement of Li–S cell performance by employing a highly porous conductive separator coating. J Power Sources 309:76–81

    CAS  Google Scholar 

  38. Zhang K, Qin F, Fang J, Li Q, Jia M, Lai Y, Zhang Z, Li J (2014) Nickel foam as interlayer to improve the performance of lithium–sulfur battery. J Solid State Electrochem 18:1025–1029

    CAS  Google Scholar 

  39. Zhang Z, Lai Y, Zhang Z, Zhang K, Li J (2014) Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim Acta 129:55–61

    Google Scholar 

  40. Kaiser MR, Wang J, Liang X, Liu HK, Dou SX (2015) A systematic approach to high and stable discharge capacity for scaling up the lithium–sulfur battery. J Power Sources 279:231–237

    CAS  Google Scholar 

  41. Yao H, Yan K, Li W, Zheng G, Kong D, She ZW, Narasimhan VK, Liang Z, Cu Y (2014) Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface. Energy Environ Sci 7:3381–3390

    CAS  Google Scholar 

  42. Zhang Z, Wang G, Lai Y, Li J, Zhang Z, Chen W (2015) Nitrogen-doped porous hollow carbon sphere-decorated separators for advanced lithium–sulfur batteries. J Power Sources 300:157–163

    CAS  Google Scholar 

  43. Zhang Y, Li K, Li H, Peng Y, Wang Y, Wang J, Zhao J (2017) High sulfur loading lithium–sulfur batteries based on a upper current collector electrode with lithium-ion conductive polymers. J Mater Chem A 5:97–101

    CAS  Google Scholar 

  44. He N, Zhong L, Xiao M, Wang S, Han D, Meng Y (2016) Foldable and high sulfur loading 3d carbon electrode for high-performance Li–S battery application. Sci Rep 6:33871

    CAS  Google Scholar 

  45. Chung SH, Luo L, Manthiram A (2018) TiS2-polysulfide hybrid cathode with high sulfur loading and low electrolyte consumption for lithium–sulfur batteries. ACS Energy Lett. 3:568–573

    CAS  Google Scholar 

  46. Ren G, Li S, Fan ZX, Warzywoda J, Fan Z (2016) Soybean-derived hierarchical porous carbon with large sulfur loading and sulfur content for high-performance lithium–sulfur batteries. J Mater Chem A 4:16507–16515

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to ARCI-technical research centre (Ref. No. AI/1/65/ARCI/2014), Department of Science and Technology (DST), Government of India for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tata Narasinga Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hari Mohan, E., Nanaji, K., Anandan, S. et al. Porous graphitic carbon sheets with high sulfur loading and dual confinement of polysulfide species for enhanced performance of Li–S batteries. J Mater Sci 55, 16659–16673 (2020). https://doi.org/10.1007/s10853-020-05193-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05193-2

Navigation