Skip to main content
Log in

Effect of austenite stability on the fracture micromechanisms and ductile-to-brittle transition in a medium-Mn, ultra-fine-grained steel for automotive applications

  • Interface Science
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work reports on the tensile and Charpy impact behaviour of a high-strength, ultra-fine-grained, medium-manganese steel with a ferrite + austenite microstructure. The mechanical stability of austenite was varied by varying the test temperature, while keeping all other microstructural features constant. By lowering the tensile test temperature, austenite decomposition into martensite occurred earlier, inducing strong work hardening, decreasing tensile elongation and triggering ferrite–martensite interfacial decohesion. Under impact testing, the material exhibited a broad transition in absorbed energy and in thickness reduction at fracture initiation. A continuous transition in fracture mechanism, from fully ductile to fully interfacial fracture, occurred with lowering the test temperature. Besides chemically induced weakening of ferrite–austenite interfaces, the temperature-dependent mechanical stability of retained austenite, as well as the strength of the ferrite phase, is thought to control local stresses at interfaces between ferrite and freshly formed martensite. It thus drives the extent of interfacial microcrack initiation and propagation before blunting and development into voids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figrue 10

Similar content being viewed by others

References

  1. Lee YK, Han J (2015) Current opinion in medium manganese steel. Mater Sci Technol 31:843–856

    Article  CAS  Google Scholar 

  2. Zuazo I, Hallstedt B, Lindahl B, Selleby M, Soler M, Etienne A, Perlade A, Hasenpouth D, Massardier-Jourdan V, Cazottes S, Kleber X (2014) Low-density steels: complex metallurgy for automotive applications. JOM 66:1747–1758

    Article  CAS  Google Scholar 

  3. Lee S, De Cooman BC (2013) On the selection of the optimal intercritical annealing temperature for medium Mn TRIP steel. Metall Mater Trans 44A:5018–5024

    Article  Google Scholar 

  4. Lee S, De Cooman BC (2014) Annealing temperature dependence of the tensile behavior of 10pct Mn multi-phase TWIP-TRIP steel. Metall Mater Trans 45A:6039–6052

    Article  Google Scholar 

  5. Suh D, Ryu J, Joo M, Yang H, Lee K, Bhadeshia H (2013) Medium alloy manganese-rich transformation-induced plasticity steels. Metall Mater Trans 44A:286–293

    Article  Google Scholar 

  6. Arlazarov A, Gouné M, Bouaziz O, Hazotte A, Petitgand G, Barges P (2012) Evolution of microstructure and mechanical properties of medium Mn steels during double annealing. Mater Sci Eng A542:31–39

    Article  Google Scholar 

  7. Lee S, De Cooman BC (2014) Effect of the intercritical annealing temperature on the mechanical properties of 10 Pct Mn multiphase steel. Metall Mater Trans 45A:5009–5016

    Article  Google Scholar 

  8. Lee S-J, Shin S, Kwon M, Lee K, De Cooman BC (2017) Tensile properties of medium Mn steel with a bimodal UFG α + γ and coarse-Ferrite microstructure. Metall Mater Trans 48A:1678–1700

    Article  Google Scholar 

  9. Perlade A, Antoni A, Besson R, Caillard D, Callahan M, Emo J, Gourgues A-F, Maugis P, Mestrallet A, Thuinet L, Tonizzo Q, Schmitt J-H (2019) Development of 3rd generation medium Mn duplex steels for automotive applications. Mater Sci Technol 35(2):204–219

    Article  CAS  Google Scholar 

  10. Arlazarov A, Bouaziz O, Hazotte A, Gouné M, Allain S (2013) Characterization and modeling of manganese effect on the strength and strain hardening of martensitic carbon steels. ISIJ Int 53(6):1076–1080

    Article  CAS  Google Scholar 

  11. Wang C, Cao W, Shi J, Huang C, Dong H (2013) Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel. Mater Sci Eng A562:89–95

    Article  Google Scholar 

  12. Hu J, Du L-X, Xu W, Zhai J-H, Dong Y, Liu Y-J, Misra RDK (2018) Ensuring combination of strength, ductility and toughness in medium manganese steel through optimization of nano-scale metastable austenite. Mater Charact 136:20–28

    Article  CAS  Google Scholar 

  13. Han J, Kwiatowski da Silva A, Ponge D, Raabe D, Lee S-M, Lee Y-K, Lee SI, Hwang B (2017) The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel. Acta Mater 122:199–206

    Article  CAS  Google Scholar 

  14. Lu Q, Eizadjou M, Wang J, Ceguerra A, Ringer S, Zhan H, Wang L, Lai Q (2019) Medium-Mn martensitic steel ductilized by baking. Metall Mater Trans 50A:4067–4074

    Article  Google Scholar 

  15. Kuzmina M, Ponge D, Raabe D (2015) Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: example of a 9 wt.% medium Mn steel. Acta Mater 86:182–192

    Article  CAS  Google Scholar 

  16. Tanino H, Horita M, Sugimoto K-I (2016) Impact toughness of 0.2 Pct C-1.5 Pct Si-(1.5 to 5) Pct Mn transformation-induced plasticity-aided steels with an annealed martensite matrix. Metall Mater Trans 47A:2073–2080

    Article  Google Scholar 

  17. Yen H-W, Ooi SW, Eizadjou M, Breen A, Huang C-Y, Bhadeshia HKDH, Ringer SP (2015) Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels. Acta Mater 82:100–114

    Article  CAS  Google Scholar 

  18. Cai ZH, Ding H, Misra RDK, Ying ZY (2015) Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Mater 84:229–236

    Article  CAS  Google Scholar 

  19. Sun B, Ding R, Brodusch N, Chen H, Guo B, Fazeli F, Ponge D, Gauvin R, Yue S (2019) Improving the ductility of ultrahigh-strength medium Mn steels via introducing pre-existed austenite acting as a “reservoir” for Mn atoms. Mater Sci Eng A749:235–240

    Article  Google Scholar 

  20. Callahan M, Perlade A, Schmitt JH (2019) Interactions of negative strain rate sensitivity, martensite transformation, and dynamic strain aging in 3rd generation advanced high-strength steels. Mater Sci Eng A754:140–151

    Article  Google Scholar 

  21. Tonizzo Q, Caillard D, Perlade A, Mazière M, Gourgues-Lorenzon AF (2019) Multiscale examination of deformation and fracture mechanisms of a duplex advanced high strength steel: Effect of testing temperature and of micromechanical interactions between microstructural constituents. Mater Sci Eng A 764:138196

    Article  CAS  Google Scholar 

  22. Lee S, Lee S-J, Santhosh Kumar S, Lee K, De Cooman BC (2011) Localized deformation in multiphase, ultra-fine-grained 6 Pct Mn transformation-induced plasticity steel. Metall Mater Trans 42A:3638–3651

    Article  Google Scholar 

  23. Lacroix G, Pardoen T, Jacques PJ (2008) The fracture toughness of TRIP-assisted multiphase steels. Acta Mater 56:3900–3913

    Article  CAS  Google Scholar 

  24. Dmitrieva O, Ponge D, Inden G, Millán J, Choi P, Sietsma J, Raabe D (2011) Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation. Acta Mater 59:364–374

    Article  CAS  Google Scholar 

  25. Lee SW, Lee K, De Cooman BC (2015) Observation of the TWIP + TRIP plasticity-enhancement mechanism in Al-added 6 Wt Pct medium Mn steel. Metall Mater Trans 46A:2356–2363

    Article  Google Scholar 

  26. Song H, Sohn SS, Kwak J-H, Lee B-J, Lee S (2016) Effect of austenite stability on microstructural evolution and tensile properties in intercritically annealed medium-Mn lightweight steels. Metall Mater Trans 47A:2674–2685

    Article  Google Scholar 

  27. Steineder K, Krizan D, Schneider R, Béal C, Sommitsch C (2018) On the damage behavior of a 0.1C6Mn medium-Mn. Steel Res Int 89:1700378

    Article  Google Scholar 

  28. Sun B, Palanisamy D, Ponge D, Gault B, Fazeli F, Scott C, Yue S, Raabe D (2019) Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite. Acta Mater 164:683–696

    Article  CAS  Google Scholar 

  29. Yerra SK, Martin G, Véron M, Bréchet Y, Mithieux JD, Delannay L, Pardoen T (2013) Ductile fracture initiated by interface nucleation in two-phase elastoplastic systems. Eng Fract Mech 102:77–100

    Article  Google Scholar 

  30. McMahon CJ Jr, Cohen M (1965) Initiation of cleavage in polycrystalline iron. Acta Metall 13:591–603

    Article  CAS  Google Scholar 

  31. Herrmann J, Inden G, Sauthoff G (2003) Deformation behaviour of iron-rich iron-aluminum alloys at low temperatures. Acta Mater 51:2847–2857

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the French Agence Nationale de la Recherche for financial support within the framework of the ANR 13- RMNP-0002 “MeMnAl Steels”. This project was also supported by the competitive cluster “Materalia”. Technical help from J.C. Hell (XRD) and B. Bomprezzi (impact tests) from ArcelorMittal and A. Meddour from the Centre des Matériaux is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Françoise Gourgues-Lorenzon.

Ethics declarations

Conflict of interests

To the authors’ knowledge, there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonizzo, Q., Mazière, M., Perlade, A. et al. Effect of austenite stability on the fracture micromechanisms and ductile-to-brittle transition in a medium-Mn, ultra-fine-grained steel for automotive applications. J Mater Sci 55, 9245–9257 (2020). https://doi.org/10.1007/s10853-020-04470-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04470-4

Navigation