Skip to main content
Log in

Medium-Mn Martensitic Steel Ductilized by Baking

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the microstructure and mechanical properties, especially the impacts of low-temperature tempering, of the medium-Mn martensitic steel were examined. The low-temperature tempering simulated paint baking in car manufacturing. Significant improvement of tensile ductility was achieved by baking, associating with a change from brittle to ductile fracture behavior. The ductilization was attributed to the carbon re-distribution during baking, as allowed by the high volume fraction of retained austenite (15 pct). The carbon distribution was characterized by Atom Probe Tomography. The baked medium-Mn martensitic steel presents an excellent strength–ductility combination, which is a promising candidate as next-generation high-performance steels for vehicle lightweighting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. M. Jonsson: 1st Int. Conf. Hot Sheet Metal Form. High Perform. Steel, GRIPS media GmbH, Kassel, Germany, 2008, pp. 253–56.

  2. 2. H. Karbasian and A. E. Tekkaya, J. Mater. Process. Technol. 2010, vol. 210, pp. 2103-2118.

    Article  Google Scholar 

  3. 3. G. Krauss, Mater. Sci. Eng. A 1999, vol. 273, pp. 40-57.

    Article  Google Scholar 

  4. 4. G. Krauss, Metall. Mater. Trans. A 2001, vol. 32, pp. 861-877.

    Article  Google Scholar 

  5. 5. B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg and M. Thuvander, Acta Mater. 2011, vol. 59, pp. 5845-5858.

    Article  Google Scholar 

  6. 6. L. Morsdorf, O. Jeannin, D. Barbier, M. Mitsuhara, D. Raabe and C. C. Tasan, Acta Mater. 2016, vol. 121, pp. 202-214.

    Article  Google Scholar 

  7. J. W. Christian (1971) Strengthening Methods in Crystals. Elsevier, Barking, pp. 261-329 .

    Google Scholar 

  8. G. Badinier, C.W. Sinclair, S. Allain, F. Danoix. and M. Gouné: Refer. Modul. Mater. Sci. Mater. Eng., Elsevier, Amsterdam, 2017.

  9. 9. Q. Lai, C. W. Sinclair and W. J. Poole, Canadian Metallurgical Quarterly 2018, vol. 57, pp. 20-27.

    Article  Google Scholar 

  10. 10. B. Hutchinson, P. Bate, D. Lindell, A. Malik, M. Barnett and P. Lynch, Acta Mater. 2018, vol. 152, pp. 239-247.

    Article  Google Scholar 

  11. 11. A. Kwiatkowski da Silva, G. Inden, A. Kumar, D. Ponge, B. Gault and D. Raabe, Acta Mater. 2018, vol. 147, pp. 165-175.

    Article  Google Scholar 

  12. 12. E. R. Parker and V. F. Zackay, Eng. Fract. Mech. 1975, vol. 7, pp. 371-374,.

    Article  Google Scholar 

  13. 13. E. J. Seo, L. Cho and B. C. De Cooman, Metall. Mater. Trans. A 2014, vol. 45, pp. 4022-4037.

    Article  Google Scholar 

  14. 14. H. Liu, X. Lu, X. Jin, H. Dong and J. Shi, Scr. Mater. 2011, vol. 64, pp. 749-752.

    Article  Google Scholar 

  15. Q. Lu, J. Wang, Y. Liu, and Z. Wang: 6th Int. Conf. Hot Sheet Metal Form. High Perform. Steel, Atlanta, 2017.

  16. 17. M. M. Wang, C. C. Tasan, D. Ponge, A. Ch Dippel and D. Raabe, Acta Mater. 2015, vol. 85, pp. 216-228.

    Article  Google Scholar 

  17. ASTM E975-03, ASTM International 2003, pp. 1–7.

  18. 19. M. J. Van Genderen, M. Isac, A. Bottger and E. J. Mittemeijer, Metall. Mater. Trans. A 1997, vol. 28A, pp. 545-61.

    Article  Google Scholar 

  19. B. M. Linke, T. Gerber, A. R. Hatscher, I. Salvatori, I. Aranguren and M. Arribas (2018) Metall. Mater. Trans. A, vol. 49A, pp. 54-65.

    Article  Google Scholar 

  20. 22. David Kalish and Morris Cohen, Mater. Sci. Eng. 1970, vol. 6, pp. 156-166.

    Article  Google Scholar 

  21. D. Kalish and E. M. Roberts, Metal. Trans. 1971, vol. 2, pp. 2783-2790.

    Article  Google Scholar 

  22. H. Mehrer: 1.8 Temperature dependence of diffusion: Datasheet from Landolt-Börnstein – Group III Condensed Matter, Volume 26: “Diffusion in Solid Metals and Alloys” in Springer Materials. Springer, Heidelberg. https://dx.doi.org/10.1007/10390457_6.

  23. http://www.thermocalc.com/products-services/.

  24. 26. H. Springer, M. Beide and D. Raabe, Mater. Sci. Eng. A 2013, vol. 582, pp. 235-244.

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Lai acknowledges the funding provided by the National Key R&D Program of China (Grant No. 2017YFA0204403), Natural Science Foundation of Jiangsu Province (Grant No. BK20180492), and the Fundamental Research Funds for the Central Universities (Grant No. 30917011106). Dr. Lu appreciates the experimental help from Jiawei Ma (China Science Lab, General Motors Global Research and Development). The authors acknowledge the facilities, and the scientific and technical assistance, of Microscopy Australia at the Australian Centre for Microscopy & Microanalysis, The University of Sydney (Sydney Microscopy & Microanalysis).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Q. Lu or Q. Lai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 18, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Eizadjou, M., Wang, J. et al. Medium-Mn Martensitic Steel Ductilized by Baking. Metall Mater Trans A 50, 4067–4074 (2019). https://doi.org/10.1007/s11661-019-05335-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05335-5

Navigation