Skip to main content
Log in

Magnetic bacterial cellulose and carbon nanofiber aerogel by simple immersion and pyrolysis

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC)/Fe3O4 aerogels were fabricated by a simple immersion of BC hydrogels in commercially available ferrofluid solution followed by freeze-drying. The BC/Fe3O4 aerogels were converted into carbon nanofiber (CNF)/Fe3O4 aerogels by pyrolysis at 600 °C. With our fabrication methods, the Fe3O4 nanoparticles (NPs) were effectively impregnated and homogeneously distributed in the nanostructures of BC and CNF. The average diameters of the BC and CNF nanofibers were found to be about 79.3 ± 14.1 nm and 56.7 ± 13.6 nm, respectively. Increasing the ferrofluid concentration resulted in a nonlinear increase of Fe3O4 NPs loaded into the BC and CNF structure, but the functional groups were not affected. The saturation magnetization (Ms) of CNF/Fe3O4 was larger than those of BC/Fe3O4 and increased with the amount of impregnated Fe3O4 NPs. The maximum magnetization in our work was larger than literature values, with the highest Ms of 82.9 emu/g approaching the bulk value of Fe3O4. The materials presented could be used as pollutant absorbers for wastewater treatment. We have demonstrated the capability of using magnetic CNF aerogels in absorbing a common dye pollutant from water. The dye was absorbed efficiently, and the aerogels were easily magnetically removed from the solution and are reusable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Mandal M, Kundu S, Ghosh SK, Panigrahi S, Sau TK, Yusuf SM, Pal T (2005) Magnetite nanoparticles with tunable gold or silver shell. J Colloid Interface Sci 286:187–194. https://doi.org/10.1016/j.jcis.2005.01.013

    Article  CAS  Google Scholar 

  2. Gawande MB, Branco PS, Varma RS (2013) Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem Soc Rev 42:3371–3393. https://doi.org/10.1039/C3CS35480F

    Article  CAS  Google Scholar 

  3. Tang SCN, Lo IMC (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632. https://doi.org/10.1016/j.watres.2013.02.039

    Article  CAS  Google Scholar 

  4. Turcheniuk K, Tarasevych AV, Kukhar VP, Boukherroub R, Szunerits S (2013) Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale 5:10729–10752. https://doi.org/10.1039/C3NR04131J

    Article  CAS  Google Scholar 

  5. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265. https://doi.org/10.1016/j.addr.2008.03.018

    Article  CAS  Google Scholar 

  6. Xie K, Li J, Lai Y, Lu W, Zhang ZA, Liu Y, Zhou L, Huang H (2011) Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochem Commun 13:657–660. https://doi.org/10.1016/j.elecom.2011.03.040

    Article  CAS  Google Scholar 

  7. Wu W, He Q, Jiang C (2008) Magnetic Iron Oxide Nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415. https://doi.org/10.1007/s11671-008-9174-9

    Article  CAS  Google Scholar 

  8. Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10. https://doi.org/10.1016/j.scitotenv.2012.02.023

    Article  CAS  Google Scholar 

  9. Huang Y, Lin Z, Zheng M, Wang T, Yang J, Yuan F, Lu X, Liu L, Sun D (2016) Amorphous Fe2O3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries. J Power Sources 307:649–656. https://doi.org/10.1016/j.jpowsour.2016.01.026

    Article  CAS  Google Scholar 

  10. Zheng Y, Yang J, Zheng W, Wang X, Xiang C, Tang L, Zhang W, Chen S, Wang H (2013) Synthesis of flexible magnetic nanohybrid based on bacterial cellulose under ultrasonic irradiation. Mater Sci Eng C Mater 33:2407–2412. https://doi.org/10.1016/j.msec.2013.02.007

    Article  CAS  Google Scholar 

  11. De Jong KP, Geus JW (2000) Carbon nanofibers: catalytic synthesis and applications. Catal Rev 42:481–510. https://doi.org/10.1081/CR-100101954

    Article  Google Scholar 

  12. Han S, Sun Q, Zheng H, Li J, Jin C (2016) Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution. Carbohydr Polym 136:95–100. https://doi.org/10.1016/j.carbpol.2015.09.024

    Article  CAS  Google Scholar 

  13. Faccini M, Borja G, Boerrigter M, Martin DM, Crespiera SM, Vazquez-Campos S, Aubouy L, Amantia D (2015) Electrospun carbon nanofiber membranes for filtration of nanoparticles from water. J Nanomater. https://doi.org/10.1155/2015/247471

    Article  Google Scholar 

  14. Yang X, Guillorn MA, Austin D, Melechko AV, Cui H, Meyer HM, Merkulov VI, Caughman JBO, Lowndes DH, Simpson ML (2003) Fabrication and characterization of carbon nanofiber-based vertically integrated Schottky barrier junction diodes. Nano Lett 3:1751–1755. https://doi.org/10.1021/nl0346631

    Article  CAS  Google Scholar 

  15. Xu J, Zhang L, Xu G, Sun Z, Zhang C, Ma X, Qi C, Zhang L, Jia D (2018) Facile synthesis of NiS anchored carbon nanofibers for high-performance supercapacitors. Appl Surf Sci 434:112–119. https://doi.org/10.1016/j.apsusc.2017.09.233

    Article  CAS  Google Scholar 

  16. Liu Y, Teng H, Hou H, You T (2009) Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosens Bioelectron 24:3329–3334. https://doi.org/10.1016/j.bios.2009.04.032

    Article  CAS  Google Scholar 

  17. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  Google Scholar 

  18. Li D, Wang Y, Xia Y (2004) Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater 16:361–366. https://doi.org/10.1002/adma.200306226

    Article  CAS  Google Scholar 

  19. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  CAS  Google Scholar 

  20. Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374. https://doi.org/10.1021/acs.chemrev.6b00225

    Article  CAS  Google Scholar 

  21. Lee S-H, An S-J, Lim Y-M, Huh J-B (2017) The efficacy of electron beam irradiated bacterial cellulose membranes as compared with collagen membranes on guided bone regeneration in peri-implant bone defects. Materials 10:1018

    Article  Google Scholar 

  22. Vasconcelos NF, Feitosa JPA, da Gama FMP, Morais JPS, Andrade FK, de Souza Filho MDSM, Rosa MDF (2017) Bacterial cellulose nanocrystals produced under different hydrolysis conditions: properties and morphological features. Carbohydr Polym 155:425–431. https://doi.org/10.1016/j.carbpol.2016.08.090

    Article  CAS  Google Scholar 

  23. Wu Z-Y, Liang H-W, Chen L-F, Hu B-C, Yu S-H (2016) Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Acc Chem Res 49:96–105. https://doi.org/10.1021/acs.accounts.5b00380

    Article  CAS  Google Scholar 

  24. Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr. 98:1585–1598. https://doi.org/10.1016/j.carbpol.2013.08.018

    Article  CAS  Google Scholar 

  25. Raymond L, Revol JF, Ryan DH, Marchessault RH (1994) In situ synthesis of ferrites in cellulosics. Chem Mater 6:249–255. https://doi.org/10.1021/cm00038a025

    Article  CAS  Google Scholar 

  26. Raymond L, Revol JF, Marchessault RH, Ryan DH (1995) In situ synthesis of ferrites in ionic and neutral cellulose gels. Polymer 36:5035–5043. https://doi.org/10.1016/0032-3861(96)81633-8

    Article  CAS  Google Scholar 

  27. Zeng M, Laromaine A, Feng W, Levkin PA, Roig A (2014) Origami magnetic cellulose: controlled magnetic fraction and patterning of flexible bacterial cellulose. J Mater Chem C 2:6312–6318. https://doi.org/10.1039/C4TC00787E

    Article  CAS  Google Scholar 

  28. Yingkamhaeng N, Intapan I, Sukyai P (2018) Fabrication and characterisation of functionalised superparamagnetic bacterial nanocellulose using ultrasonic-assisted in situ synthesis. Fibers Polym 19:489–497. https://doi.org/10.1007/s12221-018-7738-6

    Article  CAS  Google Scholar 

  29. Katepetch C, Rujiravanit R (2011) Synthesis of magnetic nanoparticle into bacterial cellulose matrix by ammonia gas-enhancing in situ co-precipitation method. Carbohydr Polym 86:162–170. https://doi.org/10.1016/j.carbpol.2011.04.024

    Article  CAS  Google Scholar 

  30. Marins JA, Soares BG, Barud HS, Ribeiro SJL (2013) Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material. Mater Sci Eng C Mater 33:3994–4001. https://doi.org/10.1016/j.msec.2013.05.035

    Article  CAS  Google Scholar 

  31. Ren Y, Dai B, Wang GH, Zhang XW, Zhu P, Li SR (2015) Preparation and microwave absorption properties of novel carbon nanofiber/Fe3O4 composites. J Nanosci Nanotechnol 15:2845–2849

    Article  CAS  Google Scholar 

  32. Luo H, Zhang Y, Yang Z, Xiong G, Wan Y (2017) Constructing superior carbon–nanofiber-based composite microwave absorbers by engineering dispersion and loading of Fe3O4 nanoparticles on three-dimensional carbon nanofibers derived from bacterial cellulose. Mater Chem Phys 201:130–138. https://doi.org/10.1016/j.matchemphys.2017.08.048

    Article  CAS  Google Scholar 

  33. Lv X, Li G, Zhou H, Li D, Zhang J, Pang Z, Lv P, Cai Y, Huang F, Wei Q (2018) Novel freestanding N-doped carbon coated Fe3O4 nanocomposites with 3D carbon fibers network derived from bacterial cellulose for supercapacitor application. J Electroanal Chem 810:18–26. https://doi.org/10.1016/j.jelechem.2017.12.082

    Article  CAS  Google Scholar 

  34. Sriplai N, Mongkolthanaruk W, Eichhorn SJ, Pinitsoontorn S (2018) Magnetically responsive and flexible bacterial cellulose membranes. Carbohydr Polym 192:251–262. https://doi.org/10.1016/j.carbpol.2018.03.072

    Article  CAS  Google Scholar 

  35. Varma AJ, Chavan VB (1995) Thermal properties of oxidized cellulose. Cellulose 2:41–49. https://doi.org/10.1007/bf00812771

    Article  CAS  Google Scholar 

  36. Puig-Gamero M, Fernandez-Lopez M, Sánchez P, Valverde JL, Sanchez-Silva L (2017) Pyrolysis process using a bench scale high pressure thermobalance. Fuel Process Technol 167:345–354. https://doi.org/10.1016/j.fuproc.2017.07.020

    Article  CAS  Google Scholar 

  37. Yue ZR, Jiang W, Wang L, Gardner SD, Pittman CU (1999) Surface characterization of electrochemically oxidized carbon fibers. Carbon 37:1785–1796. https://doi.org/10.1016/S0008-6223(99)00047-0

    Article  CAS  Google Scholar 

  38. Gomez-Serrano V, Pastor-Villegas J, Perez-Florindo A, Duran-Valle C, Valenzuela-Calahorro C (1996) FT-IR study of rockrose and of char and activated carbon. J Anal Appl Pyrolysis 36:71–80. https://doi.org/10.1016/0165-2370(95)00921-3

    Article  CAS  Google Scholar 

  39. Nasibulina LI, Anoshkin IV, Nasibulin AG, Cwirzen A, Penttala V, Kauppinen EI (2012) Effect of carbon nanotube aqueous dispersion quality on mechanical properties of cement composite. J Nanomater 2012:35–35. https://doi.org/10.1155/2012/169262

    Article  CAS  Google Scholar 

  40. Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411. https://doi.org/10.1023/B:Cell.0000046412.11983.61

    Article  CAS  Google Scholar 

  41. Shen Y-D, Xiao Z-C, Miao L-X, Kong D-B, Zheng X-Y, Chang Y-H, Zhi L-J (2017) Pyrolyzed bacterial cellulose/graphene oxide sandwich interlayer for lithium–sulfur batteries. Rare Met 36:418–424. https://doi.org/10.1007/s12598-017-0906-9

    Article  CAS  Google Scholar 

  42. Dursun B, Sar T, Ata A, Morcrette M, Akbas MY, Demir-Cakan R (2016) Pyrolyzed bacterial cellulose-supported SnO2 nanocomposites as high-capacity anode materials for sodium-ion batteries. Cellulose 23:2597–2607. https://doi.org/10.1007/s10570-016-0966-2

    Article  Google Scholar 

  43. Korobeinyk AV, Whitby RLD, Niu JJ, Gogotsi Y, Mikhalovsky SV (2011) Rapid assembly of carbon nanotube-based magnetic composites. Mater Chem Phys 128:514–518. https://doi.org/10.1016/j.matchemphys.2011.03.038

    Article  CAS  Google Scholar 

  44. Ozaki M, Suzuki H, Takahashi K, Matijević E (1986) Reversible ordered agglomeration of hematite particles due to weak magnetic interactions. J Colloid Interface Sci 113:76–80. https://doi.org/10.1016/0021-9797(86)90207-9

    Article  CAS  Google Scholar 

  45. Cullity BD, Graham CD (2009) Introduction to magnetic materials. Wiley, Hoboken

    Google Scholar 

  46. Park M, Cheng J, Choi J, Kim J, Hyun J (2013) Electromagnetic nanocomposite of bacterial cellulose using magnetite nanoclusters and polyaniline. Colloid Surf B 102:238–242. https://doi.org/10.1016/j.colsurfb.2012.07.046

    Article  CAS  Google Scholar 

  47. Zhang W, Chen S, Hu W, Zhou B, Yang Z, Yin N, Wang H (2011) Facile fabrication of flexible magnetic nanohybrid membrane with amphiphobic surface based on bacterial cellulose. Carbohydr Polym 86:1760–1767. https://doi.org/10.1016/j.carbpol.2011.07.015

    Article  CAS  Google Scholar 

  48. Liu Z, Wan Y, Xiong G, Guo R, Luo H (2015) Three-dimensional porous nanocomposite of highly dispersed Fe3O4 nanoparticles on carbon nanofibers for high-performance microwave absorbents. Mater Express 5:113–120. https://doi.org/10.1166/mex.2015.1216

    Article  CAS  Google Scholar 

  49. Ai L, Zhang C, Chen Z (2011) Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J Hazard Mater 192:1515–1524. https://doi.org/10.1016/j.jhazmat.2011.06.068

    Article  CAS  Google Scholar 

  50. Tan IAW, Hameed BH, Ahmad AL (2007) Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chem Eng J 127:111–119. https://doi.org/10.1016/j.cej.2006.09.010

    Article  CAS  Google Scholar 

  51. Roufegari-Nejhad E, Sirousazar M, Abbasi-Chiyaneh V, Kheiri F (2019) Removal of methylene blue from aqueous solutions using poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels: Taguchi optimization. J Environ Polym 27:2239–2249. https://doi.org/10.1007/s10924-019-01514-y

    Article  CAS  Google Scholar 

  52. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209:172–184. https://doi.org/10.1016/j.cis.2014.04.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Thailand Research Fund (TRF) in cooperation with Synchrotron Light Research Institute (public organization) and Khon Kaen University (RSA6280020), the Royal Society-Newton Advanced Fellowship (NA160147) in partnership with the Thailand Research Fund (TRF) (DBG6080002), the Royal Golden Jubilee PhD Programme (PHD/0063/2558) and the Research Network NANOTEC (RNN) program of the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Higher Education, Science, Research and Innovation and Khon Kaen University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen J. Eichhorn or Supree Pinitsoontorn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriplai, N., Mongkolthanaruk, W., Eichhorn, S.J. et al. Magnetic bacterial cellulose and carbon nanofiber aerogel by simple immersion and pyrolysis. J Mater Sci 55, 4113–4126 (2020). https://doi.org/10.1007/s10853-019-04295-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04295-w

Navigation