Skip to main content
Log in

Removal of Methylene Blue from Aqueous Solutions Using Poly(vinyl alcohol)/Montmorillonite Nanocomposite Hydrogels: Taguchi Optimization

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Nanocomposite hydrogel adsorbents on the basis of poly(vinyl alcohol) containing 0, 4, 8 and 12 wt% (based on dry basis) of montmorillonite were prepared using a cyclic freezing–thawing process. The capabilities of the adsorbents in adsorbing of a cationic dye, methylene blue, were studied in aqueous solutions having different temperatures, pH and concentrations. The Taguchi method was utilized to optimize the controllable factors, including the montmorillonite loading level, the solution temperature and pH and also the methylene blue concentration in adsorption solution. The prepared nanocomposite hydrogel adsorbents were characterized by Fourier transform infrared spectroscopy and their gel content and swelling values were also measured. The results showed that the gel content and swelling of nanocomposite hydrogel adsorbents had a direct and inverse dependency to the loading level of incorporated montmorillonite to adsorbent, respectively. The successful dye adsorption by the prepared nanocomposite hydrogel adsorbents was confirmed by the Fourier transform infrared spectroscopy. Based on the Taguchi method, the optimized conditions for methylene blue adsorption were found as: montmorillonite loading level of 12 wt%, adsorption temperature of 50 °C, pH of the aqueous solution of 9 and methylene blue concentration in adsorption solution of 5 mg/L. The percentage contribution of each parameter on the removal of methylene blue was determined using the Analysis of Variance method and the following order was found: temperature > concentration of methylene blue in solution > montmorillonite loading level in adsorbent > pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Belhouchat N, Zaghouane-Boudiaf H, Viseras C (2017) Appl Clay Sci 135:9–15

    Article  CAS  Google Scholar 

  2. Mahdavinia GR, Iravani S, Zoroufi S, Hosseinzadeh H (2014) Iran Polym J 23:335–344

    Article  CAS  Google Scholar 

  3. Mohammadi T, Kazemi P (2014) Desalin Water Treat 52:1341–1349

    Article  CAS  Google Scholar 

  4. Mbacke MK, Kane C, Diallo NO, Diop CM, Chauvet F, Comtat M, Tzedakis T (2016) J Environ Chem Eng 4:4001–4011

    Article  CAS  Google Scholar 

  5. Cano OA, Gonzalez CAR, Paz JFH, Madrid PA, Casillas PEG, Hernandez ALM, Perez CAM (2017) Catal Today 282:168–173

    Article  CAS  Google Scholar 

  6. Senan RC, Abraham TE (2004) Biodegradation 15:275–280

    Article  CAS  PubMed  Google Scholar 

  7. Agnihotri S, Singhal R (2019) J Polym Environ 27:372–385

    Article  CAS  Google Scholar 

  8. Ahmad R, Kumar R (2011) Clean Soil Air Water 39:74–82

    Article  CAS  Google Scholar 

  9. Miclescu A, Wiklund L (2010) J Rom Anest Terap Int 17:35–41

    Google Scholar 

  10. Murugesan A, Divakaran M, Raveendran P, Nikamanth ABN, Thelly KJ (2019) J Polym Environ 27:1007–1024

    Article  CAS  Google Scholar 

  11. Hameed BH, Ahmad AA (2009) J Hazard Mater 164:870–875

    Article  CAS  PubMed  Google Scholar 

  12. Zolfaghari R, Katbab AA, Nabavizadeh J, Tabasi RY, Nejad MH (2006) J Appl Polym Sci 100:2096–2103

    Article  CAS  Google Scholar 

  13. Sirousazar M, Kokabi M, Hassan ZM, Bahramian AR (2011) Sci Iran F 18:780–784

    CAS  Google Scholar 

  14. Abdurrahmanoglu S, Can V, Okay O (2008) J Appl Polym Sci 109:3714–3724

    Article  CAS  Google Scholar 

  15. Sirousazar M, Kokabi M, Hassan ZM (2012) J Appl Polym Sci 123:50–58

    Article  CAS  Google Scholar 

  16. Haraguchi K, Takehisa T (2002) Adv Mater 14:1120–1124

    Article  CAS  Google Scholar 

  17. Sirousazar M, Kokabi M, Hassan ZM, Bahramian AR (2012) J Appl Polym Sci 125:122–130

    Article  CAS  Google Scholar 

  18. Kang S, Zhao Y, Wang W, Zhang T, Chen T, Yi H, Rao F, Song S (2018) Appl Surf Sci 448:203–211

    Article  CAS  Google Scholar 

  19. Lee WF, Fu YT (2003) J Appl Polym Sci 89:3652–3660

    Article  CAS  Google Scholar 

  20. Sirousazar M, Taleblou N, Roufegari-Nejad E (2019) Hydrogel and nanocomposite hydrogel drug-delivery systems for treatment of cancers. In: Holban AM, Grumezescu AM (eds) Materials for biomedical engineering: nanomaterials-based drug delivery. Elsevier, Amsterdam, pp 287–316

    Google Scholar 

  21. Sirousazar M, Kokabi M, Hassan ZM, Bahramian AR (2012) J Macromol Sci B 51:1335–1350

    Article  CAS  Google Scholar 

  22. Sirousazar M, Kokabi M, Hassan ZM, Bahramian AR (2012) J Macromol Sci B 51:1583–1595

    Article  CAS  Google Scholar 

  23. Jahani-Javanmardi A, Sirousazar M, Shaabani Y, Kheiri F (2016) J Biomater Sci Polym Ed 27:1262–1276

    Article  CAS  PubMed  Google Scholar 

  24. Sirousazar M, Jahani-Javanmardi A, Kheiri F, Hassan ZM (2016) J Biomater Sci Polym Ed 27:1569–1583

    Article  CAS  PubMed  Google Scholar 

  25. Hu XS, Liang R, Sun G (2018) J Mater Chem A 6:17612–17624

    Article  CAS  Google Scholar 

  26. Zhuang Y, Yu F, Chen J, Ma J (2016) J Environ Chem Eng 4:147–156

    Article  CAS  Google Scholar 

  27. Mahdavinia GR, Bazmizeynabad F (2014) Polym Plast Technol Eng 53:411–422

    Article  CAS  Google Scholar 

  28. Mahdavinia GR, Soleymani M, Sabzi M, Azimi H, Atlasi Z (2017) J Environ Chem Eng 5:2617–2630

    Article  CAS  Google Scholar 

  29. Shaabani Y, Sirousazar M, Kheiri F (2016) J Macromol Sci B 55:849–865

    Article  CAS  Google Scholar 

  30. Shaabani Y, Sirousazar M, Kheiri F (2016) Appl Clay Sci 126:287–296

    Article  CAS  Google Scholar 

  31. Yen HY (2016) Desalin Water Treat 57:20430–20438

    Article  CAS  Google Scholar 

  32. Rashidzadeh A, Olad A, Salari D (2015) Fibers Polym 16:354–362

    Article  CAS  Google Scholar 

  33. Pundir R, Chary GHVC, Dastidar MG (2018) Water Resour Ind 20:83–92

    Article  Google Scholar 

  34. Zolfaghari G, Esmaili-Sari A, Anbia M, Younesi H (2011) J Hazard Mater 192:1046–1055

    Article  CAS  PubMed  Google Scholar 

  35. Kumar S, Chary GHVC, Dastidar MG (2015) Fuel 141:9–16

    Article  CAS  Google Scholar 

  36. Mittal H, Maity A, Ray SS (2015) Chem Eng J 279:166–179

    Article  CAS  Google Scholar 

  37. Wang W, Zhao Y, Bai H, Zhang T, Ibarra-Galvan V, Song S (2018) Carbohydr Polym 198:518–528

    Article  CAS  PubMed  Google Scholar 

  38. Wang W, Zhao Y, Yi H, Chen T, Kang S, Li H, Song S (2018) Nanotechnology 29:025605

    Article  CAS  PubMed  Google Scholar 

  39. Hosseinzadeh H, Khoshnood N (2016) Desalin Water Treat 57:6372–6383

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sirousazar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roufegari-Nejhad, E., Sirousazar, M., Abbasi-Chiyaneh, V. et al. Removal of Methylene Blue from Aqueous Solutions Using Poly(vinyl alcohol)/Montmorillonite Nanocomposite Hydrogels: Taguchi Optimization. J Polym Environ 27, 2239–2249 (2019). https://doi.org/10.1007/s10924-019-01514-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01514-y

Keywords

Navigation