Skip to main content
Log in

Structure of nanoparticle aggregate films built using pulsed-mode electrospray atomization

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thin continuous films with tailored micro- and nano-structure were built from nanoparticle aggregates using pulsed-mode electrospray atomization. The aggregates were assembled in-flight and delivered to a target substrate in a dry state. We report on the processing–structure relationship for an individual aggregate and reveal how their assembly determines the structure of the film. Titanium dioxide nanoparticles (P25, ~ 21 nm) were used as a model system given their importance in a wide range of applications. We describe how properties such as nanoparticle concentration, Taylor cone pulsation frequency, solvent volatility, suspension conductivity, and substrate electrical properties govern the size distribution and morphology of the aggregates. We then further report how the aggregate characteristics govern the structure of the film. Aggregates formed using electrospray possess an excess electric charge that can be maintained after they are deposited on the target substrate. This charge accumulation and its dissipation rate play a significant role in film formation. Films are thicker and exhibit a more significant periodic island structure if the dissipation rate of the accumulated charge is enhanced using a conductive substrate or by periodically deactivating the electrospray. Decreasing the separation distance increases the film thickness and island size by limiting the plume dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Song MK, Park S, Alamgir FM et al (2011) Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater Sci Eng R Rep 72:203–252. https://doi.org/10.1016/j.mser.2011.06.001

    Article  Google Scholar 

  2. Tang J, Gomez A (2015) Control of the mesoporous structure of dye-sensitized solar cells with electrospray deposition. J Mater Chem A 3:7830–7839. https://doi.org/10.1039/c5ta00288e

    Article  Google Scholar 

  3. Hwang D, Lee H, Jang S-Y et al (2011) Electrospray preparation of hierarchically-structured mesoporous TiO2 spheres for use in highly efficient dye-sensitized solar cells. ACS Appl Mater Interfaces 3:2719–2725. https://doi.org/10.1021/am200517v

    Article  Google Scholar 

  4. Lee H, Hwang D, Jo SM et al (2012) Low-temperature fabrication of TiO2 electrodes for flexible dye-sensitized solar cells using an electrospray process. ACS Appl Mater Interfaces 4:3308–3315. https://doi.org/10.1021/am3007164

    Article  Google Scholar 

  5. Fujimoto M, Kado T, Takashima W et al (2006) Dye-sensitized solar cells fabricated by electrospray coating using TiO2 nanocrystal dispersion solution. J Electrochem Soc 153:A826–A829. https://doi.org/10.1149/1.2179368

    Article  Google Scholar 

  6. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  7. Martin S, Garcia-Ybarra PL, Castillo JL (2010) Electrospray deposition of catalyst layers with ultra-low Pt loadings for PEM fuel cells cathodes. J Power Sources 195:2443–2449. https://doi.org/10.1016/j.jpowsour.2009.11.092

    Article  Google Scholar 

  8. Şanlı LI, Yarar B, Bayram V, Gürsel SA (2017) Electrosprayed catalyst layers based on graphene–carbon black hybrids for the next-generation fuel cell electrodes. J Mater Sci 52:2091–2102. https://doi.org/10.1007/s10853-016-0497-0

    Article  Google Scholar 

  9. Jaworek A (2007) Electrospray droplet sources for thin film deposition. J Mater Sci 42:266–297. https://doi.org/10.1007/s10853-006-0842-9

    Article  Google Scholar 

  10. Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17:467–479. https://doi.org/10.1007/s00586-008-0745-3

    Article  Google Scholar 

  11. Hogan CJ, Biswas P (2008) Porous film deposition by electrohydrodynamic atomization of nanoparticle sols. Aerosol Sci Technol 42:75–85. https://doi.org/10.1080/02786820701787951

    Article  Google Scholar 

  12. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425. https://doi.org/10.1016/j.rser.2005.01.009

    Article  Google Scholar 

  13. Lui G, Liao J-Y, Duan A et al (2013) Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance. J Mater Chem A 1:12255–12262. https://doi.org/10.1039/c3ta12329d

    Article  Google Scholar 

  14. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C Photochem Rev 13:169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  Google Scholar 

  15. Haidry A, Schlosser P, Durina P et al (2011) Hydrogen gas sensors based on nanocrystalline TiO2 thin films. Open Phys 9:1351–1356. https://doi.org/10.2478/s11534-011-0042-3

    Article  Google Scholar 

  16. Xi B, Verma LK, Li J et al (2012) TiO2 thin films prepared via adsorptive self-assembly for self-cleaning applications. ACS Appl Mater Interfaces 4:1093–1102. https://doi.org/10.1021/am201721e

    Article  Google Scholar 

  17. Jaworek A, Sobczyk AT (2008) Electrospraying route to nanotechnology: an overview. J Electrostat 66:197–219. https://doi.org/10.1016/j.elstat.2007.10.001

    Article  Google Scholar 

  18. Jaworek A, Sobczyk AT, Krupa A (2018) Electrospray application to powder production and surface coating. J Aerosol Sci 125:57–92. https://doi.org/10.1016/j.jaerosci.2018.04.006

    Article  Google Scholar 

  19. Brown NA, Zhu Y, German GK et al (2017) Electrospray deposit structure of nanoparticle suspensions. J Electrostat 90:67–73. https://doi.org/10.1016/j.elstat.2017.09.004

    Article  Google Scholar 

  20. Xie J, Marijnissen JCM, Wang CH (2006) Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro. Biomaterials 27:3321–3332. https://doi.org/10.1016/j.biomaterials.2006.01.034

    Article  Google Scholar 

  21. Xie J, Lim LK, Phua Y et al (2006) Electrohydrodynamic atomization for biodegradable polymeric particle production. J Colloid Interface Sci 302:103–112. https://doi.org/10.1016/j.jcis.2006.06.037

    Article  Google Scholar 

  22. Xie J, Jiang J, Davoodi P et al (2015) Electrohydrodynamic atomization: a two-decade effort to produce and process micro-/nanoparticulate materials. Chem Eng Sci 125:32–57. https://doi.org/10.1016/j.ces.2014.08.061

    Article  Google Scholar 

  23. Lee H, Paik D-H, Jeong K-Y et al (2015) Fabrication of poly(methyl methacrylate) and TiO2 composite microspheres with controlled morphologies and porous structures by electrospraying. J Mater Sci 50:6531–6538. https://doi.org/10.1007/s10853-015-9216-5

    Article  Google Scholar 

  24. Suhendi A, Nandiyanto ABD, Munir MM et al (2013) Self-assembly of colloidal nanoparticles inside charged droplets during spray-drying in the fabrication of nanostructured particles. Langmuir 29:13152–13161. https://doi.org/10.1021/la403127e

    Article  Google Scholar 

  25. Castillo JL, Martin S, Rodriguez-Perez D et al (2018) Nanostructured porous coatings via electrospray atomization and deposition of nanoparticle suspensions. J Aerosol Sci 125:148–163. https://doi.org/10.1016/j.jaerosci.2018.03.004

    Article  Google Scholar 

  26. Soliwoda K, Rosowski M, Tomaszewska E et al (2015) Electrospray deposition of gold nanoparticles from aqueous colloids on solid substrates. Colloids Surfaces A Physicochem Eng Asp 486:211–217. https://doi.org/10.1016/j.colsurfa.2015.09.035

    Article  Google Scholar 

  27. Agostini P, Meffre A, Lacroix LM et al (2016) Electrospray deposition of isolated chemically synthesized magnetic nanoparticles. J Nanoparticle Res 18:1–10. https://doi.org/10.1007/s11051-015-3312-y

    Article  Google Scholar 

  28. Tang J, Gomez A (2017) Controlled mesoporous film formation from the deposition of electrosprayed nanoparticles. Aerosol Sci Technol 51:755–765. https://doi.org/10.1080/02786826.2017.1303573

    Article  Google Scholar 

  29. Rayleigh L (1882) XX. On the equilibrium of liquid conducting masses charged with electricity. Lond Edinb Dublin Philos Mag J Sci 14:184–186. https://doi.org/10.1080/14786448208628425

    Article  Google Scholar 

  30. de la Mora JF, Loscertales IG (1994) The current emitted by highly conducting Taylor cones. J Fluid Mech 260:155–184. https://doi.org/10.1017/S0022112094003472

    Article  Google Scholar 

  31. de Juan L, de la Mora JF (1997) Charge and size distributions of electrospray drops. J Colloid Interface Sci 186:280–293. https://doi.org/10.1006/jcis.1996.4654

    Article  Google Scholar 

  32. Nemes P, Goyal S, Vertes A (2008) Conformational and noncovalent complexation changes in proteins during electrospray ionization. Anal Chem 80:387–395. https://doi.org/10.1021/ac0714359

    Article  Google Scholar 

  33. Rosell-Llompart J, Grifoll J, Loscertales IG (2018) Electrosprays in the cone-jet mode: from Taylor cone formation to spray development. J Aerosol Sci 125:2–31. https://doi.org/10.1016/j.jaerosci.2018.04.008

    Article  Google Scholar 

  34. Cloupeau M, Prunet-Foch B (1990) Electrostatic spraying of liquids: main functioning modes. J Electrostat 25:165–184. https://doi.org/10.1016/0304-3886(90)90025-Q

    Article  Google Scholar 

  35. Smith JN, Flagan RC, Beauchamp JL (2002) Droplet evaporation and discharge dynamics in electrospray ionization. J Phys Chem A 106:9957–9967. https://doi.org/10.1021/jp025723e

    Article  Google Scholar 

  36. Verdoold S, Agostinho LLF, Yurteri CU, Marijnissen JCM (2014) A generic electrospray classification. J Aerosol Sci 67:87–103. https://doi.org/10.1016/j.jaerosci.2013.09.008

    Article  Google Scholar 

  37. Bodnár E, Rosell-Llompart J (2013) Growth dynamics of granular films produced by electrospray. J Colloid Interface Sci 407:536–545. https://doi.org/10.1016/j.jcis.2013.06.013

    Article  Google Scholar 

  38. Higuera FJ (2018) Structure of deposits formed from electrosprayed aggregates of nanoparticles. J Aerosol Sci 118:45–58. https://doi.org/10.1016/j.jaerosci.2018.01.007

    Article  Google Scholar 

  39. Castillo JL, Martin S, Rodriguez-Perez D et al (2014) Morphology and nanostructure of granular materials built from nanoparticles. KONA Powder Part J 31:214–233. https://doi.org/10.14356/kona.2014012

    Article  Google Scholar 

  40. Xi J, Zhang Q, Xie S et al (2011) Fabrication of TiO2 aggregates by electrospraying and their application in dye-sensitized solar cells. Nanosci Nanotechnol Lett 3:690–696. https://doi.org/10.1166/nnl.2011.1223

    Article  Google Scholar 

  41. Mills A, Lee S-K (2002) A web-based overview of semiconductor photochemistry-based current commercial applications. J Photochem Photobiol A Chem 152:233–247. https://doi.org/10.1016/S1010-6030(02)00243-5

    Article  Google Scholar 

  42. Hartman RPA, Brunner DJ, Camelot DMA et al (2000) Jet break-up in electrohydrodynamic atomization in the cone-jet mode. J Aerosol Sci 31:65–95. https://doi.org/10.1016/S0021-8502(99)00034-8

    Article  Google Scholar 

  43. Brown NA, Zhu Y, Li A et al (2017) Structure of electrospray printed deposits for short spray times. J Micro Nano Manuf 5:040906. https://doi.org/10.1115/1.4037695

    Article  Google Scholar 

  44. Rosell-Llompart J, Fernández de la Mora J (1994) Generation of monodisperse droplets 0.3 to 4 μm in diameter from electrified cone-jets of highly conducting and viscous liquids. J Aerosol Sci 25:1093–1119. https://doi.org/10.1016/0021-8502(94)90204-6

    Article  Google Scholar 

  45. Dastourani H, Jahannama MR, Eslami-Majd A (2018) A physical insight into electrospray process in cone-jet mode: role of operating parameters. Int J Heat Fluid Flow 70:315–335. https://doi.org/10.1016/j.ijheatfluidflow.2018.02.012

    Article  Google Scholar 

  46. Oh H, Kim K, Kim S (2008) Characterization of deposition patterns produced by twin-nozzle electrospray. J Aerosol Sci 39:801–813. https://doi.org/10.1016/j.jaerosci.2008.05.003

    Article  Google Scholar 

  47. Wilhelm O, Mädler L, Pratsinis SE (2003) Electrospray evaporation and deposition. J Aerosol Sci 34:815–836. https://doi.org/10.1016/S0021-8502(03)00034-X

    Article  Google Scholar 

  48. Gibbons MJ, Robinson AJ (2018) Electrospray array heat transfer. Int J Therm Sci 129:451–461. https://doi.org/10.1016/j.ijthermalsci.2018.03.021

    Article  Google Scholar 

  49. Lei L, Kovacevich DA, Nitzsche MP et al (2018) Obtaining thickness-limited electrospray deposition for 3D coating. ACS Appl Mater Interfaces 10:11175–11188. https://doi.org/10.1021/acsami.7b19812

    Article  Google Scholar 

Download references

Acknowledgements

Support for this research was provided by the National Science Foundation (CAREER Award #1554038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Chiarot.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Chiarot, P.R. Structure of nanoparticle aggregate films built using pulsed-mode electrospray atomization. J Mater Sci 54, 6122–6139 (2019). https://doi.org/10.1007/s10853-019-03349-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03349-3

Navigation