Skip to main content
Log in

Synthesis and characterization of amine-modified spherical nanocellulose aerogels

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, cellulose nanocrystal (CNC) was prepared from microcrystalline cellulose (MCC) by acid hydrolysis method. The N-(2-aminoethyl)(3-aminopropyl) methyldimethoxysilane (AEAPMDS)-CNC aerogel was successfully fabricated either by freeze-drying or supercritical CO2 drying of spherical CNC hydrogels into which the amine group has been successfully introduced via C–O–Si bonds between CNC and AEAPMDS. The impact of various parameters (time, temperature, AEAPMDS amount, solid-to-liquid ratio) on the properties of the as-prepared materials is systematically explored, revealing the optimum reaction conditions (100 °C, 16 h, solid-to-liquid ratio of 1:10). The as-prepared spherical nanocellulose aerogels were characterized with respect to textural, structural, thermal and morphological characteristics by various methods (BET, XRD, SEM, TGA, FTIR, and NMR). They exhibited a nano-porous network structure of mesopores possessing a high surface area (262 m2/g) in the case of supercritical CO2 drying, whereas a honeycomb structure comprising squares, polygons and circles with a surface area of 120.4 m2/g was obtained by freeze-drying. The as-synthesized AEAPMDS-CNC aerogels could be potentially applied to capture CO2 via covalent bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chirayil CJ, Mathew L, Thomas S (2013) Review of recent research in nanocellulose preparation from different lignicellulosic fibers. Rev Adv Mater Sci 37:20–28

    Google Scholar 

  2. Mohd NH, Arman Alim AA, Zahari JI et al (2017) Properties of aminosilane modified nanocrytalline cellulose (NCC) from oil palm empty fruit bunch (OPEFB) fibers. Mater Sci Forum 88:284–289

    Article  Google Scholar 

  3. Kang H, Liu R, Huang Y (2015) Graft modification of cellulose: methods, properties and applications. Polymer 70:A1–A16

    Article  Google Scholar 

  4. Sani A, Dahman Y (2010) Improvements in the production of bacterial synthesized biocellulose nanofibres using different culture methods. J Chem Technol Biotechnol 85:151–164

    Google Scholar 

  5. Yu H, Liu R, Qiu L, Huang Y (2007) Composition of the cell wall in the stem and leaf sheath of wheat straw. J Appl Polym Sci 104:1236–1240

    Article  Google Scholar 

  6. Fu J, Wang S, He C, Lu Z, Huang J, Chen Z (2016) Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Carbohydr Polym 147:89–96

    Article  Google Scholar 

  7. Sun H, Miao J, Yu Y, Zhang L (2015) Dissolution of cellulose with a novel solvent and formation of regenerated cellulose fiber. Appl Phys A-Mater 119:539–546

    Article  Google Scholar 

  8. Huang H, Chen X, Yuan W (2006) Microencapsulation based on emulsification for producing pharmaceutical products: a literature review. Dev Chem Eng Mineral Process 14:515–544

    Article  Google Scholar 

  9. Hokkanen S, Bhatnagar A, Sillanpaa M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173

    Article  Google Scholar 

  10. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crop Prod 93:2–25

    Article  Google Scholar 

  11. Wang X, Zhang Y, Jiang H, Song Y, Zhou Z, Zhao H (2016) Fabrication and characterization of nano-cellulose aerogels via supercritical CO2 drying technology. Mater Lett 183:179–182

    Article  Google Scholar 

  12. Liu S, Zhang Y, Jiang H, Wang X, Zhang T, Yao Y (2018) High CO2 adsorption by amino-modified bio-spherical cellulose nanofibres aerogels. Environ Chem Lett 16:605–614

    Article  Google Scholar 

  13. Wang X, Zhang Y, Jiang H, Song Y, Zhou Z, Zhao H (2017) Tert-butyl alcohol used to fabricate nano-cellulose aerogels via freeze-drying technology. Mater Res Express 4:065006. https://doi.org/10.1088/2053-1591/aa72bc

    Article  Google Scholar 

  14. Fox SC, Li B, Xu D, Edgar KJ (2011) Regioselective esterification and etherification of cellulose: a review. Biomacromolecules 12:1956–1972

    Article  Google Scholar 

  15. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  Google Scholar 

  16. J-i Kadokawa (2016) Dissolution, gelation, functionalization, and material preparation of chitin using ionic liquids. Pure Appl Chem 88:621–629

    Google Scholar 

  17. Batmaz R, Mohammed N, Zaman M, Minhas G, Berry RM, Tam KC (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21:1655–1665

    Article  Google Scholar 

  18. Saito T, Isogai A (2005) Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO-mediated system. Carbohydr Polym 61:183–190

    Article  Google Scholar 

  19. Memon SQ, Memon N, Shah SW, Khuhawar MY, Bhanger MI (2007) Sawdust—a green and economical sorbent for the removal of cadmium (II) ions. J Hazard Mater 139:116–121

    Article  Google Scholar 

  20. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf 41:806–819

    Article  Google Scholar 

  21. Qua EH, Hornsby PR, Sharma HSS, Lyons G (2011) Preparation and characterisation of cellulose nanofibres. J Mater Sci 46:6029–6045. https://doi.org/10.1007/s10853-011-5565-x

    Article  Google Scholar 

  22. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. https://doi.org/10.1186/1754-6834-3-10

    Article  Google Scholar 

  23. Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668

    Article  Google Scholar 

  24. Ren S, Zhang X, Dong L et al (2017) Cellulose nanocrystal supported superparamagnetic nanorods with aminated silica shell: synthesis and properties. J Mater Sci 52:6432–6441. https://doi.org/10.1007/s10853-017-0878-z

    Article  Google Scholar 

  25. Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45:9101–9108

    Article  Google Scholar 

  26. Gebald C, Wurzbacher JA, Tingaut P, Steinfeld A (2013) Stability of amine-functionalized cellulose during temperature-vacuum-swing cycling for CO2 capture from air. Environ Sci Technol 47:10063–10070

    Article  Google Scholar 

  27. Gebald C, Wurzbacher JA, Borgschulte A, Zimmermann T, Steinfeld A (2014) Single-component and binary CO2 and H2O adsorption of amine-functionalized cellulose. Environ Sci Technol 48:2497–2504

    Article  Google Scholar 

  28. Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296

    Article  Google Scholar 

  29. Abdelmouleh M, Boufi S, Belgacem MN, Duarte AP, Ben Salah A, Gandini A (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Adhes Adhes 24:43–54

    Article  Google Scholar 

  30. Gamelas JAF, Oliveira F, Evtyugina MG, Portugal I, Evtuguin DV (2016) Catalytic oxidation of formaldehyde by ruthenium multisubstitutedtungstosilicic polyoxometalate supported on cellulose/silica hybrid. Appl Catal A Gen 509:8–16

    Article  Google Scholar 

  31. Gamelas JAF, Evtuguin DV, Esculcas AP (2007) Transition metal substituted polyoxometalates supported on amine-functionalized silica. Trans Metal Chem 32:1061–1067

    Article  Google Scholar 

  32. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227. https://doi.org/10.1007/BF01139044

    Article  Google Scholar 

  33. Job N, Théry A, Pirard R et al (2005) Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43:2481–2494

    Article  Google Scholar 

  34. Lee KY, Tammelin T, Schulfter K, Kiiskinen H, Samela J, Bismarck A (2012) High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. ACS Appl Mater Interfaces 4:4078–4086

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Special Fund for Forest Scientific Research in the Public Welfare (201504603), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, and the Doctorate Fellowship Foundation of Nanjing Forestry University of China (163020772).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Zhang or Siqun Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, Y., Wang, S. et al. Synthesis and characterization of amine-modified spherical nanocellulose aerogels. J Mater Sci 53, 13304–13315 (2018). https://doi.org/10.1007/s10853-018-2595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2595-7

Keywords

Navigation