Skip to main content
Log in

Cellulose nanocrystal supported superparamagnetic nanorods with aminated silica shell: synthesis and properties

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Superparamagnetic nanorods consisting of cellulose nanocrystals (CNCs), ferrosoferric oxide (Fe3O4), and surface-aminated silica (SiO2–NH2) were synthesized for the first time for targeted biomedical applications (i.e., cell imaging). CNCs and Fe3O4 were used as the template and magnetic property provider, respectively. The silica was functionized as magnetite core protector and rich amino group supplier. The synthesized nanorods exhibited a core–shell architecture (i.e., CNCs/Fe3O4 core and aminated silica shell). Due to the coated silica shell, thermal stability of the nanorods was improved with the onset decomposition temperature increased by 135 °C compared with that of the uncoated CNCs. Because of the existence of the positively charged amino groups, the nanorods were easily linked with fluorescent dyes for cell imaging in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wang B, Torres-Rendon JG, Yu J, Zhang Y, Walther A (2015) Aligned bioinspired cellulose nanocrystal-based nanocomposites with synergetic mechanical properties and improved hygromechanical performance. ACS Appl Mater Interfaces 7:4595–4607

    Article  Google Scholar 

  2. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227

    Article  Google Scholar 

  3. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728

    Article  Google Scholar 

  4. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  5. Han J, Zhou C, Wu Y, Liu F, Wu Q (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14:1529–1540

    Article  Google Scholar 

  6. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  Google Scholar 

  7. Chen Q, Liu P, Nan F, Zhou L, Zhang J (2014) Tuning the iridescence of chiral nematic cellulose nanocrystal films with a vacuum-assisted self-assembly technique. Biomacromolecules 15:4343–4350

    Article  Google Scholar 

  8. Ul-Islam M, Khattak WA, Ullah MW, Khan S, Park JK (2013) Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose 21:433–447

    Article  Google Scholar 

  9. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431

    Article  Google Scholar 

  10. Gao J, Liang G, Zhang B, Kuang Y, Zhang X, Xu B (2007) FePt@CoS2 Yolk-shell nanocrystals as a potent agent to kill hela cells. J Am Chem Soc 129:1428–1433

    Article  Google Scholar 

  11. Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212:474–482

    Article  Google Scholar 

  12. Lee J-H, Huh Y-M, Y-w Jun, J-w Seo, J-t Jang, Song H-T, Kim S, Cho E-J, Yoon H-G, Suh J-S, Cheon J (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99

    Article  Google Scholar 

  13. Xu C, Sun S (2007) Monodisperse magnetic nanoparticles for biomedical applications. Polym Int 56:821–826

    Article  Google Scholar 

  14. Lu Y, Yin Y, Mayers BT, Xia Y (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol–gel approach. Nano Lett 2:183–186

    Article  Google Scholar 

  15. Teng Z, Zhu X, Zheng G, Zhang F, Deng Y, Xiu L, Li W, Yang Q, Zhao D (2012) Ligand exchange triggered controlled-release targeted drug delivery system based on core-shell superparamagnetic mesoporous microspheres capped with nanoparticles. J Mater Chem 22:17677–17684

    Article  Google Scholar 

  16. Irimia-Vladu M, Głowacki ED, Troshin PA, Schwabegger G, Leonat L, Susarova DK, Krystal O, Ullah M, Kanbur Y, Bodea MA, Razumov VF, Sitter H, Bauer S, Sariciftci NS (2012) Indigo—from jeans to semiconductors: indigo—a natural pigment for high performance ambipolar organic field effect transistors and circuits (Adv. Mater. 3/2012). Adv Mater 24:321–321

    Article  Google Scholar 

  17. Cheng K, Peng S, Xu C, Sun S (2009) Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. J Am Chem Soc 131:10637–10644

    Article  Google Scholar 

  18. Wang W, Xu Y, Wang DIC, Li Z (2009) Recyclable nanobiocatalyst for enantioselective sulfoxidation: facile fabrication and high performance of chloroperoxidase-coated magnetic nanoparticles with iron oxide core and polymer shell. J Am Chem Soc 131:12892–12893

    Article  Google Scholar 

  19. Zhao X, Shi Y, Cai Y, Mou S (2008) Cetyltrimethylammonium bromide-coated magnetic nanoparticles for the preconcentration of phenolic compounds from environmental water samples. Environ Sci Technol 42:1201–1206

    Article  Google Scholar 

  20. Wang L, Park H-Y, Lim SII, Schadt MJ, Mott D, Luo J, Wang X, Zhong C-J (2008) Core@shell nanomaterials: gold-coated magnetic oxide nanoparticles. J Mater Chem 18:2629–2635

    Article  Google Scholar 

  21. Selvan ST, Patra PK, Ang CY, Ying JY (2007) Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew Chem Int Ed Engl 119:2500–2504

    Article  Google Scholar 

  22. Shao M, Ning F, Zhao J, Wei M, Evans DG, Duan X (2012) Preparation of Fe3O4@SiO2@ layered double hydroxide core-shell microspheres for magnetic separation of proteins. J Am Chem Soc 134:1071–1077

    Article  Google Scholar 

  23. Zhu Y, Fang Y, Kaskel S (2010) Folate-conjugated Fe3O4@SiO2 hollow mesoporous spheres for targeted anticancer drug delivery. J Phys Chem C 114:16382–16388

    Article  Google Scholar 

  24. Wu X, Lu C, Zhou Z, Yuan G, Xiong R, Zhang X (2014) Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance. Environ Sci Nano 1:71–79

    Article  Google Scholar 

  25. Liu H, Song J, Shang S, Song Z, Wang D (2012) Cellulose nanocrystal/silver nanoparticle composites as bifunctional nanofillers within waterborne polyurethane. ACS Appl Mater Interfaces 4:2413–2419

    Article  Google Scholar 

  26. Liu K, Nasrallah J, Chen L, Huang L, Ni Y (2015) Preparation of CNC-dispersed Fe3O4 nanoparticles and their application in conductive paper. Carbohydr Polym 126:175–178

    Article  Google Scholar 

  27. Chen L, Berry RM, Tam KC (2014) Synthesis of β-cyclodextrin-modified cellulose nanocrystals (CNCs)@Fe3O4@SiO2 superparamagnetic nanorods. ACS Sustain Chem Eng 2:951–958

    Article  Google Scholar 

  28. Chu C, Li M, Li L, Ge S, Ge L, Yu J, Yan M, Song X (2013) Preparation of Fe3O4@C@CNC multifunctional magnetic core/shell nanoparticles and their application in a signal-type flow-injection photoluminescence immunosensor. Anal Bioanal Chem 405:9555–9561

    Article  Google Scholar 

  29. Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin C-H, Park J-G, Kim J, Hyeon T (2006) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128:688–689

    Article  Google Scholar 

  30. Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29

    Article  Google Scholar 

  31. Zhao W, Gu J, Zhang L, Chen H, Shi J (2005) Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J Am Chem Soc 127:8916–8917

    Article  Google Scholar 

  32. Teng Z, Sun C, Su X, Liu Y, Tang Y, Zhao Y, Chen G, Yan F, Yang N, Wang C, Lu G (2013) Superparamagnetic high-magnetization composite spheres with highly aminated ordered mesoporous silica shell for biomedical applications. J Mater Chem B 1:4684

    Article  Google Scholar 

  33. Teng Z, Su X, Zheng Y, Sun J, Chen G, Tian C, Wang J, Li H, Zhao Y, Lu G (2013) Mesoporous silica hollow spheres with ordered radial mesochannels by a spontaneous self-transformation approach. Chem Mater 25:98–105

    Article  Google Scholar 

  34. Dhar P, Kumar A, Katiyar V (2016) Magnetic cellulose nanocrystal based anisotropic polylactic acid nanocomposite films: influence on electrical, magnetic, thermal, and mechanical properties. ACS Appl Mater Interfaces 8:18393–18409

    Article  Google Scholar 

  35. Hribernik S, Smole MS, Kleinschek KS, Bele M, Jamnik J, Gaberscek M (2007) Flame retardant activity of SiO2-coated regenerated cellulose fibres. Polym Degrad Stab 92:1957–1965

    Article  Google Scholar 

  36. Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19:7137–7145

    Article  Google Scholar 

  37. Shin Y, Bae I-T, Arey BW, Exarhos GJ (2008) Facile stabilization of gold–silver alloy nanoparticles on cellulose nanocrystal. J Phys Chem C 112:4844–4848

    Article  Google Scholar 

  38. Si S, Li C, Wang X, Yu D, Peng Q, Li Y (2005) Magnetic monodisperse Fe3O4 nanoparticles. Cryst Growth Des 5:391–393

    Article  Google Scholar 

  39. Yildirim A, Ozgur E, Bayindir M (2013) Impact of mesoporous silica nanoparticle surface functionality on hemolytic activity, thrombogenicity and non-specific protein adsorption. J Mater Chem B 1:1909–1920

    Article  Google Scholar 

  40. Salmio H, Brühwiler D (2007) Distribution of amino groups on a mesoporous silica surface after submonolayer deposition of aminopropylsilanes from an anhydrous liquid phase. J Phys Chem C 111:923–929

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support from Foundation and Cutting-edge Technology Project of Henan province, China (142300413220).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingzhou Lei or Qinglin Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Zhang, X., Dong, L. et al. Cellulose nanocrystal supported superparamagnetic nanorods with aminated silica shell: synthesis and properties. J Mater Sci 52, 6432–6441 (2017). https://doi.org/10.1007/s10853-017-0878-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0878-z

Keywords

Navigation