Skip to main content

Nanocellulose Aerogels

  • Chapter
  • First Online:
Springer Handbook of Aerogels

Part of the book series: Springer Handbooks ((SHB))

  • 1321 Accesses

Abstract

With the advent of the green economy, the most abundant and renewable polymer on Earth, cellulose, holds, once again, academia and industry’s attention. The biodegradability, biocompatibility, and low density of cellulose have always been the main assets in the development of aerogels. However, with the rapid emergence of a new family of cellulose, so-called nanocellulose or cellulose nanomaterials (CNMs), the application field of bio-based aerogels is rapidly expanding.

CNMs are nano-sized cellulose particles produced from any kind of cellulose sources by either biological synthesis or chemical or physical routes. Their high aspect ratio, large surface area, tunable surface chemistry, high strength, and low density are many ideal characteristics for the elaboration of sustainable, lightweight, and functional mesoporous solids.

This chapter gives an overview on CNM aerogel processing, properties, and applications. CNM aerogels can be obtained from hydro- or alcogel by either supercritical CO2 drying or ice templating, two techniques that can be used to produce lightweight, highly porous aerogels (>99%) with large specific surface area (>100 m2/g). This chapter discusses the high compressive strength and superinsulation properties of CNM aerogels, which paves the way for future high-value applications. Possibilities in functionalization of CNMs for their controlled interaction with other nano-sized particles and/or biopolymers have significantly broadened the applications of CNM aerogels spanning from bio-based adsorbents, biomedical scaffolds, and insulation materials to carbon aerogels, energy-storage devices, or inorganic templates. This chapter illustrates a few of these promising application areas and highlights remaining challenges to address for advancing commercialization of CNM-based aerogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, Z.M., Gibson, L.J.: The structure and mechanics of nanofibrillar cellulose foams. Soft Matter. 9, 1580–1588 (2013). https://doi.org/10.1039/C2SM27197D

    Article  CAS  Google Scholar 

  2. Anglès, M.N., Dufresne, A.: Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules. 33, 8344–8353 (2000). https://doi.org/10.1021/ma0008701

    Article  Google Scholar 

  3. Araki, J., Wada, M., Kuga, S., Okano, T.: Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf. A Physicochem. Eng. Asp. 142, 75–82 (1998). https://doi.org/10.1016/S0927-7757(98)00404-X

    Article  CAS  Google Scholar 

  4. Atsuhiko, Y., Hiroyuki, F., Toshihiro, K., Tooru, K., Kimiko, E., Yoshinobu, I., Manabu, I., Shigehiro, N.: Thermal conductivity of high strength polyethylene fiber in low temperature. J. Polym. Sci. Part B Polym. Phys. 43, 1495–1503 (2005). https://doi.org/10.1002/polb.20428

    Article  CAS  Google Scholar 

  5. Aulin, C., Netrval, J., Wågberg, L., Lindström, T.: Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter. 6, 3298–3305 (2010). https://doi.org/10.1039/c001939a

    Article  CAS  Google Scholar 

  6. Azizi Samir, M.A.S., Alloin, F., Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 6, 612–626 (2005). https://doi.org/10.1021/bm0493685

    Article  CAS  Google Scholar 

  7. Bäckdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risberg, B., Gatenholm, P.: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials. 27, 2141–2149 (2006). https://doi.org/10.1016/j.biomaterials.2005.10.026

    Article  CAS  Google Scholar 

  8. Beck-Candanedo, S., Roman, M., Gray, D.G.: Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules. 6, 1048–1054 (2005). https://doi.org/10.1021/bm049300p

    Article  CAS  Google Scholar 

  9. Bendahou, D., Bendahou, A., Seantier, B., Grohens, Y., Kaddami, H.: Nano-fibrillated cellulose-zeolites based new hybrid composites aerogels with super thermal insulating properties. Ind. Crop. Prod. 65, 374–382 (2015). https://doi.org/10.1016/j.indcrop.2014.11.012

    Article  CAS  Google Scholar 

  10. Bo, H., Kan, W., Liheng, W., Shu-Hong, Y., Markus, A., Maria-Magdalena, T.: Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22, 813–828 (2010). https://doi.org/10.1002/adma.200902812

    Article  CAS  Google Scholar 

  11. Bondeson, D., Mathew, A., Oksman, K.: Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose. 13, 171–180 (2006)

    Article  CAS  Google Scholar 

  12. Brodin, F.W., Gregersen, Ø.W., Syverud, K.: Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material – a review. Nordic Pulp Paper Res. J. 29, 156–166 (2014). https://doi.org/10.3183/NPPRJ-2014-29-01-p156-166

    Article  CAS  Google Scholar 

  13. Buesch, C., Smith, S.W., Eschbach, P., Conley, J.F., Simonsen, J.: The microstructure of cellulose nanocrystal aerogels as revealed by transmission electron microscope tomography. Biomacromolecules. 17, 2956–2962 (2016). https://doi.org/10.1021/acs.biomac.6b00764

    Article  CAS  Google Scholar 

  14. Cai, H., Sharma, S., Liu, W., Mu, W., Liu, W., Zhang, X., Deng, Y.: Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules. 15, 2540–2547 (2014). https://doi.org/10.1021/bm5003976

    Article  CAS  Google Scholar 

  15. Camarero Espinosa, S., Kuhnt, T., Foster, E.J., Weder, C.: Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules. 14, 1223–1230 (2013). https://doi.org/10.1021/bm400219u

    Article  CAS  Google Scholar 

  16. Cervin, N.T., Aulin, C., Larsson, P.T., Wågberg, L.: Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose. 19, 401–410 (2012). https://doi.org/10.1007/s10570-011-9629-5

    Article  CAS  Google Scholar 

  17. Chau, M., Sriskandha, S.E., Pichugin, D., Thérien-Aubin, H., Nykypanchuk, D., Chauve, G., Méthot, M., Bouchard, J., Gang, O., Kumacheva, E.: Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals. Biomacromolecules. 16, 2455–2462 (2015). https://doi.org/10.1021/acs.biomac.5b00701

    Article  CAS  Google Scholar 

  18. Chen, W., Yu, H., Li, Q., Liu, Y., Li, J.: Ultralight and highly flexible aerogels with long cellulose I nanofibers. Soft Matter. 7, 10360–10368 (2011). https://doi.org/10.1039/C1SM06179H

    Article  CAS  Google Scholar 

  19. Chen, P., Yu, H., Liu, Y., Chen, W., Wang, X., Ouyang, M.: Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose. 20, 149–157 (2013). https://doi.org/10.1007/s10570-012-9829-7

    Article  CAS  Google Scholar 

  20. Chen, W., Li, Q., Wang, Y., Yi, X., Zeng, J., Yu, H., Liu, Y., Li, J.: Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem. 7, 154–161 (2014). https://doi.org/10.1002/cssc.201300950

    Article  CAS  Google Scholar 

  21. Ciftci, D., Ubeyitogullari, A., Huerta, R.R., Ciftci, O.N., Flores, R.A., Saldaña, M.D.A.: Lupin hull cellulose nanofiber aerogel preparation by supercritical CO2 and freeze drying. J. Supercrit. Fluids. 127, 137–145 (2017). https://doi.org/10.1016/j.supflu.2017.04.002

    Article  CAS  Google Scholar 

  22. Dash, R., Li, Y., Ragauskas, A.J.: Cellulose nanowhisker foams by freeze casting. Carbohydr. Polym. 88, 789–792 (2012). https://doi.org/10.1016/j.carbpol.2011.12.035

    Article  CAS  Google Scholar 

  23. De France, K.J., Hoare, T., Cranston, E.D.: Review of hydrogels and aerogels containing nanocellulose. Chem. Mater. 29, 4609–4631 (2017). https://doi.org/10.1021/acs.chemmater.7b00531

    Article  CAS  Google Scholar 

  24. Deville, S.: Ice-templating, freeze casting: beyond materials processing. J. Mater. Res. 28, 2202–2219 (2013)

    Article  CAS  Google Scholar 

  25. Diaz, J.A., Ye, Z., Wu, X., Moore, A.L., Moon, R.J., Martini, A., Boday, D.J., Youngblood, J.P.: Thermal conductivity in nanostructured films: from single cellulose nanocrystals to bulk films. Biomacromolecules. 15, 4096–4101 (2014). https://doi.org/10.1021/bm501131a

    Article  CAS  Google Scholar 

  26. Dong, S., Bortner, M.J., Roman, M.: Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: a central composite design study. Ind. Crop. Prod. 93, 76–87 (2016). https://doi.org/10.1016/j.indcrop.2016.01.048

    Article  CAS  Google Scholar 

  27. Du, A., Zhou, B., Zhang, Z., Shen, J.: A special material or a new state of matter: a review and reconsideration of the aerogel. Materials (Basel). 6, 941–968 (2013)

    Article  CAS  Google Scholar 

  28. Dufresne, A.: Nanocellulose: From Nature to High Performance Tailored Materials. De Gruyter (2012)

    Book  Google Scholar 

  29. Dugan, J.M., Gough, J.E., Eichhorn, S.J.: Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine. 8, 287–298 (2013). https://doi.org/10.2217/nnm.12.211

    Article  CAS  Google Scholar 

  30. Emmerich, H., Martin, W., Kerstin, S., Katrin, F., Peter, M., Antje, P., Thomas, R., Falk, L.: Loading of bacterial cellulose aerogels with bioactive compounds by antisolvent precipitation with supercritical carbon dioxide. Macromol. Symp. 294, 64–74 (2010). https://doi.org/10.1002/masy.201000008

    Article  CAS  Google Scholar 

  31. Fall, A.B., Lindström, S.B., Sundman, O., Ödberg, L., Wågberg, L.: Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir. 27, 11332–11338 (2011). https://doi.org/10.1021/la201947x

    Article  CAS  Google Scholar 

  32. Fang, B., Wan, Y.-Z., Tang, T.-T., Gao, C., Dai, K.-R.: Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng. Part A. 15, 1091–1098 (2009). https://doi.org/10.1089/ten.tea.2008.0110

    Article  CAS  Google Scholar 

  33. Foster, E.J., Moon, R.J., Agarwal, U.P., Bortner, M.J., Bras, J., Camarero-Espinosa, S., Chan, K.J., Clift, M.J.D., Cranston, E.D., Eichhorn, S.J., Fox, D.M., Hamad, W.Y., Heux, L., Jean, B., Korey, M., Nieh, W., Ong, K.J., Reid, M.S., Renneckar, S., Roberts, R., Shatkin, J.A., Simonsen, J., Stinson-Bagby, K., Wanasekara, N., Youngblood, J.: Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 47, 2609–2679 (2018). https://doi.org/10.1039/C6CS00895J

    Article  CAS  Google Scholar 

  34. Fu, J., Wang, S., He, C., Lu, Z., Huang, J., Chen, Z.: Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Carbohydr. Polym. 147, 89–96 (2016). https://doi.org/10.1016/j.carbpol.2016.03.048

    Article  CAS  Google Scholar 

  35. Fumagalli, M., Sanchez, F., Boisseau, S.M., Heux, L.: Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents. Soft Matter. 9, 11309–11317 (2013). https://doi.org/10.1039/c3sm52062e

    Article  CAS  Google Scholar 

  36. García, A., Gandini, A., Labidi, J., Belgacem, N., Bras, J.: Industrial and crop wastes: a new source for nanocellulose biorefinery. Ind. Crop. Prod. 93, 26–38 (2016). https://doi.org/10.1016/j.indcrop.2016.06.004

    Article  CAS  Google Scholar 

  37. Gatenholm, P., Klemm, D.: Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull. 35, 208–213 (2010)

    Article  CAS  Google Scholar 

  38. Gavillon, R., Budtova, T.: Aerocellulose: new highly porous cellulose prepared from cellulose−NaOH aqueous solutions. Biomacromolecules. 9, 269–277 (2008). https://doi.org/10.1021/bm700972k

    Article  CAS  Google Scholar 

  39. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge University Press (1999)

    Google Scholar 

  40. Gray, D.G.: Order and gelation of cellulose nanocrystal suspensions: an overview of some issues. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376 (2018) 20170038

    Google Scholar 

  41. Grunert, M., Winter, W.T.: Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J. Polym. Environ. 10, 27–30 (2002). https://doi.org/10.1023/A:1021065905986

    Article  CAS  Google Scholar 

  42. Habibi, Y.: Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43, 1519–1542 (2014)

    Article  CAS  Google Scholar 

  43. Habibi, Y., Goffin, A.-L., Schiltz, N., Duquesne, E., Dubois, P., Dufresne, A.: Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J. Mater. Chem. 18, 5002–5010 (2008). https://doi.org/10.1039/B809212E

    Article  CAS  Google Scholar 

  44. Heath, L., Thielemans, W.: Cellulose nanowhisker aerogels. Green Chem. 12, 1448 (2010). https://doi.org/10.1039/c0gc00035c

    Article  CAS  Google Scholar 

  45. Henrik, B., Maricris, E., Dick, D., Bo, R., Paul, G.: Engineering microporosity in bacterial cellulose scaffolds. J. Tissue Eng. Regen. Med. 2, 320–330 (2008). https://doi.org/10.1002/term.97

    Article  CAS  Google Scholar 

  46. Henriksson, M., Henriksson, G., Berglund, L.A., Lindström, T.: An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur. Polym. J. 43, 3434–3441 (2007)

    Article  CAS  Google Scholar 

  47. Hoeng, F., Denneulin, A., Bras, J.: Use of nanocellulose in printed electronics: a review. Nanoscale. 8, 13131–13154 (2016)

    Article  CAS  Google Scholar 

  48. Hokkanen, S., Bhatnagar, A., Sillanpää, M.: A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 91, 156–173 (2016). https://doi.org/10.1016/j.watres.2016.01.008

    Article  CAS  Google Scholar 

  49. Hrubesh, L.W., Pekala, R.W.: Thermal properties of organic and inorganic aerogels. J. Mater. Res. 9, 731–738 (1994)

    Article  CAS  Google Scholar 

  50. Hu, Z., Cranston, E.D., Ng, R., Pelton, R.: Tuning cellulose nanocrystal gelation with polysaccharides and surfactants. Langmuir. 30, 2684–2692 (2014). https://doi.org/10.1021/la404977t

    Article  CAS  Google Scholar 

  51. Huang, C.-F., Chen, J.-K., Tsai, T.-Y., Hsieh, Y.-A., Andrew Lin, K.-Y.: Dual-functionalized cellulose nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP. Polymer (Guildf). 72, 395–405 (2015). https://doi.org/10.1016/j.polymer.2015.02.056

    Article  CAS  Google Scholar 

  52. Hubbe, M.A., Tayeb, P., Joyce, M., Tyagi, P., Kehoe, M., Dimic-Misic, K., Pal, L.: Rheology of nanocellulose-rich aqueous suspensions: a review. BioResources. 12(4), 9556 (2017)

    Article  CAS  Google Scholar 

  53. Huber, T., Müssig, J., Curnow, O., Pang, S., Bickerton, S., Staiger, M.P.: A critical review of all-cellulose composites. J. Mater. Sci. 47, 1171–1186 (2012). https://doi.org/10.1007/s10853-011-5774-3

    Article  CAS  Google Scholar 

  54. Ishida, O., Kim, D.-Y., Kuga, S., Nishiyama, Y., Brown, R.M.: Microfibrillar carbon from native cellulose. Cellulose. 11, 475–480 (2004). https://doi.org/10.1023/B:CELL.0000046410.31007.0b

    Article  CAS  Google Scholar 

  55. Isogai, A.: Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J. Wood Sci. 59, 449–459 (2013). https://doi.org/10.1007/s10086-013-1365-z

    Article  CAS  Google Scholar 

  56. Isogai, A., Saito, T., Fukuzumi, H.: TEMPO-oxidized cellulose nanofibers. Nanoscale. 3, 71–85 (2011). https://doi.org/10.1039/C0NR00583E

    Article  CAS  Google Scholar 

  57. Iwamoto, S., Abe, K., Yano, H.: The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules. 9, 1022–1026 (2008). https://doi.org/10.1021/bm701157n

    Article  CAS  Google Scholar 

  58. Jessica, A., Hanna, S., Henrik, B., Paul, G.: Behavior of human chondrocytes in engineered porous bacterial cellulose scaffolds. J. Biomed. Mater. Res. Part A. 94A, 1124–1132 (2010). https://doi.org/10.1002/jbm.a.32784

    Article  CAS  Google Scholar 

  59. Jiang, F., Hsieh, Y.-L.: Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol. ACS Appl. Mater. Interfaces. 6, 20075–20084 (2014a). https://doi.org/10.1021/am505626a

    Article  CAS  Google Scholar 

  60. Jiang, F., Hsieh, Y.-L.: Amphiphilic superabsorbent cellulose nanofibril aerogels. J. Mater. Chem. A. 2, 6337–6342 (2014b). https://doi.org/10.1039/C4TA00743C

    Article  CAS  Google Scholar 

  61. Jiménez-Saelices, C., Seantier, B., Cathala, B., Grohens, Y.: Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr. Polym. 157, 105–113 (2017). https://doi.org/10.1016/j.carbpol.2016.09.068

    Article  CAS  Google Scholar 

  62. Jin, H., Kettunen, M., Laiho, A., Pynnönen, H., Paltakari, J., Marmur, A., Ikkala, O., Ras, R.H.A.: Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir. 27, 1930–1934 (2011). https://doi.org/10.1021/la103877r

    Article  CAS  Google Scholar 

  63. Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., Davoodi, R.: Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose. 22, 935–969 (2015). https://doi.org/10.1007/s10570-015-0551-0

    Article  CAS  Google Scholar 

  64. Jorfi, M., Foster, E.J.: Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132, 41719–41738 (2015)

    Article  Google Scholar 

  65. Jozala, A.F., de Lencastre-Novaes, L.C., Lopes, A.M., de Carvalho, S.-E.V., Mazzola, P.G., Pessoa-Jr, A., Grotto, D., Gerenutti, M., Chaud, M.V.: Bacterial nanocellulose production and application: a 10-year overview. Appl. Microbiol. Biotechnol. 100, 2063–2072 (2016)

    Article  CAS  Google Scholar 

  66. Kistler, S.S.: Coherent expanded aerogels and jellies. Nature. 127, 741 (1931)

    Article  CAS  Google Scholar 

  67. Klemm, D., Schumann, D., Udhardt, U., Marsch, S.: Bacterial synthesized cellulose – artificial blood vessels for microsurgery. Prog. Polym. Sci. 26, 1561–1603 (2001). https://doi.org/10.1016/S0079-6700(01)00021-1

    Article  CAS  Google Scholar 

  68. Kobayashi, Y., Saito, T., Isogai, A.: Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew. Chem. Int. Ed. Engl. 53, 10394–10397 (2014). https://doi.org/10.1002/anie.201405123

    Article  CAS  Google Scholar 

  69. Koebel, M., Rigacci, A., Achard, P.: Aerogel-based thermal superinsulation: an overview. J. Sol-Gel Sci. Technol. 63, 315–339 (2012). https://doi.org/10.1007/s10971-012-2792-9

    Article  CAS  Google Scholar 

  70. Korhonen, J.T., Kettunen, M., Ras, R.H.A., Ikkala, O.: Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl. Mater. Interfaces. 3, 1813–1816 (2011). https://doi.org/10.1021/am200475b

    Article  CAS  Google Scholar 

  71. Lavoine, N., Bergström, L.: Nanocellulose-based foams and aerogels: processing, properties, and applications. J. Mater. Chem. A. 5 (2017). https://doi.org/10.1039/c7ta02807e

  72. Lavoine, N., Desloges, I., Dufresne, A., Bras, J.: Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr. Polym. 90, 735–764 (2012). https://doi.org/10.1016/j.carbpol.2012.05.026

    Article  CAS  Google Scholar 

  73. Le Gall, B., Taran, F., Renault, D., Wilk, J.-C., Ansoborlo, E.: Comparison of Prussian blue and apple-pectin efficacy on 137Cs decorporation in rats. Biochimie. 88, 1837–1841 (2006). https://doi.org/10.1016/j.biochi.2006.09.010

    Article  CAS  Google Scholar 

  74. Lewis, L., Derakhshandeh, M., Hatzikiriakos, S.G., Hamad, W.Y., MacLachlan, M.J.: Hydrothermal gelation of aqueous cellulose nanocrystal suspensions. Biomacromolecules. 17, 2747–2754 (2016). https://doi.org/10.1021/acs.biomac.6b00906

    Article  CAS  Google Scholar 

  75. Li, F., Mascheroni, E., Piergiovanni, L.: The potential of nanocellulose in the packaging field: a review. Packag. Technol. Sci. 28, 475–508 (2015)

    Article  Google Scholar 

  76. Liebner, F., Haimer, E., Wendland, M., Neouze, M.-A.A., Schlufter, K., Miethe, P., Heinze, T., Potthast, A., Rosenau, T.: Aerogels from unaltered bacterial cellulose: application of scCO <inf>2</inf> drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. Macromol. Biosci. 10, 349–352 (2010). https://doi.org/10.1002/mabi.200900371

    Article  CAS  Google Scholar 

  77. Liebner, F., Pircher, N., Rosenau, T.: Bacterial nanocellulose aerogels. In: Gama, M., Dourado, F., Bielecki, S. (eds.) Bacterial Nanocellulose. From Biotechnology to Bio-Economy, pp. 73–108. Elsevier (2016)

    Chapter  Google Scholar 

  78. Lin, N., Dufresne, A.: Nanocellulose in biomedicine: current status and future prospect. Eur. Polym. J. 59, 302–325 (2014). https://doi.org/10.1016/j.eurpolymj.2014.07.025

    Article  CAS  Google Scholar 

  79. Liu, Y., Wang, H., Yu, G., Yu, Q., Li, B., Mu, X.: A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohydr. Polym. 110, 415–422 (2014). https://doi.org/10.1016/j.carbpol.2014.04.040

    Article  CAS  Google Scholar 

  80. Liu, Y., Lu, T., Sun, Z., Chua, D.H.C., Pan, L.: Ultra-thin carbon nanofiber networks derived from bacterial cellulose for capacitive deionization. J. Mater. Chem. A. 3, 8693–8700 (2015). https://doi.org/10.1039/C5TA00435G

    Article  CAS  Google Scholar 

  81. Liu, H., Geng, B., Chen, Y., Wang, H.: A review on the aerogel-type oil sorbents derived from nanocellulose. ACS Sustain. Chem. Eng. 5, 49–66 (2016a). https://doi.org/10.1021/acssuschemeng.6b02301

    Article  CAS  Google Scholar 

  82. Liu, J., Cheng, F., Grénman, H., Spoljaric, S., Seppälä, J., Eriksson, J.E., Willför, S., Xu, C.: Development of nanocellulose scaffolds with tunable structures to support 3D cell culture. Carbohydr. Polym. 148, 259–271 (2016b). https://doi.org/10.1016/j.carbpol.2016.04.064

    Article  CAS  Google Scholar 

  83. Losego, M.D., Moh, L., Arpin, K.A., Cahill, D.G., Braun, P.V.: Interfacial thermal conductance in spun-cast polymer films and polymer brushes. Appl. Phys. Lett. 97, 11908 (2010). https://doi.org/10.1063/1.3458802

    Article  CAS  Google Scholar 

  84. Mahfoudhi, N., Boufi, S.: Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose. 24, 1171–1197 (2017). https://doi.org/10.1007/s10570-017-1194-0

    Article  CAS  Google Scholar 

  85. Martoïa, F., Cochereau, T., Dumont, P.J.J., Orgéas, L., Terrien, M., Belgacem, M.N.: Cellulose nanofibril foams: links between ice-templating conditions, microstructures and mechanical properties. Mater. Des. 104, 376–391 (2016). https://doi.org/10.1016/j.matdes.2016.04.088

    Article  CAS  Google Scholar 

  86. McKee, J.R., Hietala, S., Seitsonen, J., Laine, J., Kontturi, E., Ikkala, O.: Thermoresponsive nanocellulose hydrogels with tunable mechanical properties. ACS Macro Lett. 3, 266–270 (2014). https://doi.org/10.1021/mz400596g

    Article  CAS  Google Scholar 

  87. Meng, Y., Young, T.M., Liu, P., Contescu, C.I., Huang, B., Wang, S.: Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose. 22, 435–447 (2015). https://doi.org/10.1007/s10570-014-0519-5

    Article  CAS  Google Scholar 

  88. Missoum, K., Belgacem, M.N., Bras, J.: Nanofibrillated cellulose surface modification: a review. Materials (Basel). 6, 1745–1766 (2013)

    Article  Google Scholar 

  89. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011). https://doi.org/10.1039/C0CS00108B

    Article  CAS  Google Scholar 

  90. Moreno-Castilla, C., Maldonado-Hódar, F.J.: Carbon aerogels for catalysis applications: an overview. Carbon N. Y. 43, 455–465 (2005). https://doi.org/10.1016/j.carbon.2004.10.022

    Article  CAS  Google Scholar 

  91. Nechyporchuk, O., Belgacem, M.N., Bras, J.: Production of cellulose nanofibrils: a review of recent advances. Ind. Crop. Prod. 17, 2311–2320 (2016). https://doi.org/10.1016/j.indcrop.2016.02.016

    Article  CAS  Google Scholar 

  92. Nemoto, J., Saito, T., Isogai, A.: Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. ACS Appl. Mater. Interfaces. 7, 19809–19815 (2015). https://doi.org/10.1021/acsami.5b05841

    Article  CAS  Google Scholar 

  93. Nishiyama, Y., Sugiyama, J., Chanzy, H., Langan, P.: Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300–14306 (2003). https://doi.org/10.1021/ja037055w

    Article  CAS  Google Scholar 

  94. Nurhidayatulllaili, M.J., Samira, B.: Nanocellulose as a green and sustainable emerging material in energy applications: a review. Polym. Adv. Technol. 28, 1583–1594 (2017). https://doi.org/10.1002/pat.4074

    Article  CAS  Google Scholar 

  95. Pääkkö, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O., Lindström, T.: Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules. 8, 1934–1941 (2007). https://doi.org/10.1021/bm061215p

    Article  CAS  Google Scholar 

  96. Pääkkö, M., Vapaavuori, J., Silvennoinen, R., Kosonen, H., Ankerfors, M., Lindström, T., Berglund, L.A., Ikkala, O.: Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter. 4, 2492–2499 (2008). https://doi.org/10.1039/b810371b

    Article  CAS  Google Scholar 

  97. Peddireddy, K.R., Capron, I., Nicolai, T., Benyahia, L.: Gelation kinetics and network structure of cellulose nanocrystals in aqueous solution. Biomacromolecules. 17, 3298–3304 (2016). https://doi.org/10.1021/acs.biomac.6b01061

    Article  CAS  Google Scholar 

  98. Pei, A., Butchosa, N., Berglund, L.A., Zhou, Q.: Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter. 9, 2047–2055 (2013). https://doi.org/10.1039/C2SM27344F

    Article  CAS  Google Scholar 

  99. Pierre, A.C., Pajonk, G.M.: Chemistry of aerogels and their applications. Chem. Rev. 102, 4243–4266 (2002)

    Article  CAS  Google Scholar 

  100. Qing, Y., Sabo, R., Zhu, J.Y., Agarwal, U., Cai, Z., Wu, Y.: A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr. Polym. 97, 226–234 (2013). https://doi.org/10.1016/j.carbpol.2013.04.086

    Article  CAS  Google Scholar 

  101. Reichenauer, G.: Aerogels. In: Kirk-Othmer Encyclopedia of Chemical Technology. Wiley (2008)

    Google Scholar 

  102. Revol, J.-F., Godbout, L., Dong, X.-M., Gray, D.G., Chanzy, H., Maret, G.: Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq. Cryst. 16, 127–134 (1994). https://doi.org/10.1080/02678299408036525

    Article  CAS  Google Scholar 

  103. Rojo, E., Peresin, M.S., Sampson, W.W., Hoeger, I.C., Vartiainen, J., Laine, J., Rojas, O.J.: Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem. 17, 1853–1866 (2015). https://doi.org/10.1039/C4GC02398F

    Article  CAS  Google Scholar 

  104. Roman, M.: Toxicity of cellulose nanocrystals: a review. Ind. Biotechnol. 11, 25–33 (2015)

    Article  CAS  Google Scholar 

  105. Roman, M., Dong, S., Hirani, A., Lee, Y.W.: Cellulose nanocrystals for drug delivery. In: Polysaccharide Materials: Performance by Design, ACS Symposisum, pp. 81–91. American Chemical Society, Washington, DC (2010)

    Chapter  Google Scholar 

  106. Sadeghifar, H., Filpponen, I., Clarke, S.P., Brougham, D.F., Argyropoulos, D.S.: Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J. Mater. Sci. 46, 7344–7355 (2011)

    Article  CAS  Google Scholar 

  107. Sai, H., Xing, L., Xiang, J., Cui, L., Jiao, J., Zhao, C., Li, Z., Li, F., Zhang, T.: Flexible aerogels with interpenetrating network structure of bacterial cellulose-silica composite from sodium silicate precursor via freeze drying process. RSC Adv. 4, 30453–30461 (2014). https://doi.org/10.1039/C4RA02752C

    Article  CAS  Google Scholar 

  108. Sai, H., Fu, R., Xing, L., Xiang, J., Li, Z., Li, F., Zhang, T.: Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl. Mater. Interfaces. 7, 7373–7381 (2015). https://doi.org/10.1021/acsami.5b00846

    Article  CAS  Google Scholar 

  109. Saito, T., Nishiyama, Y., Putaux, J.-L., Vignon, M., Isogai, A.: Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules. 7, 1687–1691 (2006). https://doi.org/10.1021/bm060154s

    Article  CAS  Google Scholar 

  110. Saito, T., Hirota, M., Tamura, N., Kimura, S., Fukuzumi, H., Heux, L., Isogai, A.: Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules. 10, 1992–1996 (2009). https://doi.org/10.1021/bm900414t

    Article  CAS  Google Scholar 

  111. Sajab, M.S., Chia, C.H., Chan, C.H., Zakaria, S., Kaco, H., Chook, S.W., Chin, S.X., Noor, A.M.: Bifunctional graphene oxide-cellulose nanofibril aerogel loaded with Fe(iii) for the removal of cationic dye via simultaneous adsorption and Fenton oxidation. RSC Adv. 6, 19819–19825 (2016). https://doi.org/10.1039/C5RA26193G

    Article  CAS  Google Scholar 

  112. Sakai, K., Kobayashi, Y., Saito, T., Isogai, A.: Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose. Sci. Rep. 6, 20434–20441 (2016). https://doi.org/10.1038/srep20434

    Article  CAS  Google Scholar 

  113. Sanz-Moral, L.M., Rueda, M., Mato, R., Martín, Á.: View cell investigation of silica aerogels during supercritical drying: analysis of size variation and mass transfer mechanisms. J. Supercrit. Fluids. 92, 24–30 (2014). https://doi.org/10.1016/j.supflu.2014.05.004

    Article  CAS  Google Scholar 

  114. Seantier, B., Bendahou, D., Bendahou, A., Grohens, Y., Kaddami, H.: Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. Carbohydr. Polym. 138, 335–348 (2016). https://doi.org/10.1016/j.carbpol.2015.11.032

    Article  CAS  Google Scholar 

  115. Sehaqui, H., Salajková, M., Zhou, Q., Berglund, L.A.: Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter. 6, 1824–1832 (2010)

    Article  CAS  Google Scholar 

  116. Sehaqui, H., Zhou, Q., Berglund, L.A.: High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos. Sci. Technol. 71, 1593–1599 (2011). https://doi.org/10.1016/j.compscitech.2011.07.003

    Article  CAS  Google Scholar 

  117. Sescousse, R., Gavillon, R., Budtova, T.: Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr. Polym. 83, 1766–1774 (2011)

    Article  CAS  Google Scholar 

  118. Siqueira, G., Bras, J., Dufresne, A.: Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules. 10, 425–432 (2009). https://doi.org/10.1021/bm801193d

    Article  CAS  Google Scholar 

  119. Siqueira, G., Bras, J., Dufresne, A.: Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers (Basel). 2, 728–765 (2010). https://doi.org/10.3390/polym2040728

    Article  CAS  Google Scholar 

  120. Siró, I., Plackett, D.: Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose. 17, 459–494 (2010). https://doi.org/10.1007/s10570-010-9405-y

    Article  CAS  Google Scholar 

  121. Siró, I., Plackett, D., Hedenqvist, M., Ankerfors, M., Lindström, T.: Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J. Appl. Polym. Sci. 119, 2652–2660 (2011). https://doi.org/10.1002/app.32831

    Article  CAS  Google Scholar 

  122. Smirnova, A., Dong, X., Hara, H., Vasiliev, A., Sammes, N.: Novel carbon aerogel-supported catalysts for PEM fuel cell application. Int. J. Hydrog. Energy. 30, 149–158 (2005). https://doi.org/10.1016/j.ijhydene.2004.04.014

    Article  CAS  Google Scholar 

  123. Spence, K.L., Venditti, R.A., Rojas, O.J., Habibi, Y., Pawlak, J.J.: A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose. 18, 1097–1111 (2011)

    Article  CAS  Google Scholar 

  124. Tang, J., Sisler, J., Grishkewich, N., Tam, K.C.: Functionalization of cellulose nanocrystals for advanced applications. J. Colloid Interface Sci. 494, 397–409 (2017). https://doi.org/10.1016/j.jcis.2017.01.077

    Article  CAS  Google Scholar 

  125. Toivonen, M.S., Kaskela, A., Rojas, O.J., Kauppinen, E.I., Ikkala, O.: Ambient-dried cellulose nanofibril aerogel membranes with high tensile strength and their use for aerosol collection and templates for transparent, flexible devices. Adv. Funct. Mater. 25, 6618–6626 (2015). https://doi.org/10.1002/adfm.201502566

    Article  CAS  Google Scholar 

  126. Uetani, K., Hatori, K.: Thermal conductivity analysis and applications of nanocellulose materials. Sci. Technol. Adv. Mater. 18, 877–892 (2017). https://doi.org/10.1080/14686996.2017.1390692

    Article  CAS  Google Scholar 

  127. Uetani, K., Okada, T., Oyama, H.T.: Crystallite size effect on thermal conductive properties of nonwoven nanocellulose sheets. Biomacromolecules. 16, 2220–2227 (2015). https://doi.org/10.1021/acs.biomac.5b00617

    Article  CAS  Google Scholar 

  128. Valo, H., Arola, S., Laaksonen, P., Torkkeli, M., Peltonen, L., Linder, M.B., Serimaa, R., Kuga, S., Hirvonen, J., Laaksonen, T.: Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur. J. Pharm. Sci. 50, 69–77 (2013). https://doi.org/10.1016/j.ejps.2013.02.023

    Article  CAS  Google Scholar 

  129. Vipin, A.K., Fugetsu, B., Sakata, I., Isogai, A., Endo, M., Li, M., Dresselhaus, M.S.: Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium. Sci. Rep. 6, 37009 (2016)

    Article  CAS  Google Scholar 

  130. Wang, L., Schutz, C., Salazar-Alvarez, G., Titirici, M.-M.: Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries. RSC Adv. 4, 17549–17554 (2014). https://doi.org/10.1039/C3RA47853J

    Article  CAS  Google Scholar 

  131. Wang, X., Zhang, Y., Jiang, H., Song, Y., Zhou, Z., Zhao, H.: Fabrication and characterization of nano-cellulose aerogels via supercritical CO2 drying technology. Mater. Lett. 183, 179–182 (2016). https://doi.org/10.1016/j.matlet.2016.07.081

    Article  CAS  Google Scholar 

  132. Way, A.E., Hsu, L., Shanmuganathan, K., Weder, C., Rowan, S.J.: pH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett. 1, 1001–1006 (2012). https://doi.org/10.1021/mz3003006

    Article  CAS  Google Scholar 

  133. Wicklein, B., Kocjan, A., Salazar-Alvarez, G., Carosio, F., Camino, G., Antonietti, M., Bergström, L.: Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 10, 277–283 (2015). https://doi.org/10.1038/nnano.2014.248

    Article  CAS  Google Scholar 

  134. Woignier, T., Hafidi Alaoui, A., Primera, J., Phalippou, J.: Mechanical properties of aerogels : brittle or plastic solids? Key Eng. Mater. 391, 27–44 (2009). https://doi.org/10.4028/www.scientific.net/KEM.391.27

    Article  CAS  Google Scholar 

  135. Wong, J.C.H., Kaymak, H., Tingaut, P., Brunner, S., Koebel, M.M.: Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites. Microporous Mesoporous Mater. 217, 150–158 (2015). https://doi.org/10.1016/j.micromeso.2015.06.025

    Article  CAS  Google Scholar 

  136. Wu, Z.-Y., Li, C., Liang, H.-W., Chen, J.-F., Yu, S.-H.: Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew. Chem. 125, 2997–3001 (2013). https://doi.org/10.1002/ange.201209676

    Article  Google Scholar 

  137. Wu, Z.-Y., Li, C., Liang, H.-W., Zhang, Y.-N., Wang, X., Chen, J.-F., Yu, S.-H.: Carbon nanofiber aerogels for emergent cleanup of oil spillage and chemical leakage under harsh conditions. Sci. Rep. 4, 4079 (2014)

    Article  Google Scholar 

  138. Xu, Y.-T., Dai, Y., Nguyen, T.-D., Hamad, W.Y., MacLachlan, M.J.: Aerogel materials with periodic structures imprinted with cellulose nanocrystals. Nanoscale. 10, 3805–3812 (2018). https://doi.org/10.1039/C7NR07719J

    Article  CAS  Google Scholar 

  139. Yang, X., Cranston, E.D.: Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem. Mater. 26, 6016–6025 (2014). https://doi.org/10.1021/cm502873c

    Article  CAS  Google Scholar 

  140. Yu, H., Qin, Z., Liang, B., Liu, N., Zhou, Z., Chen, L.: Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J. Mater. Chem. A. 1, 3938–3944 (2013)

    Article  CAS  Google Scholar 

  141. Zhang, F., Wang, K.-X., Li, G.-D., Chen, J.-S.: Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochem. Commun. 11, 130–133 (2009). https://doi.org/10.1016/j.elecom.2008.10.041

    Article  CAS  Google Scholar 

  142. Zhang, Z., Sèbe, G., Rentsch, D., Zimmermann, T., Tingaut, P.: Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem. Mater. 26, 2659–2668 (2014). https://doi.org/10.1021/cm5004164

    Article  CAS  Google Scholar 

  143. Zhao, J., Lu, C., He, X., Zhang, X., Zhang, W., Zhang, X.: Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery. ACS Appl. Mater. Interfaces. 7, 2607–2615 (2015). https://doi.org/10.1021/am507601m

    Article  CAS  Google Scholar 

  144. Zu, G., Shen, J., Zou, L., Wang, F., Wang, X., Zhang, Y., Yao, X.: Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon N. Y. 99, 203–211 (2016). https://doi.org/10.1016/j.carbon.2015.11.079

    Article  CAS  Google Scholar 

  145. Zuluaga, R., Putaux, J.-L., Restrepo, A., Mondragon, I., Gañán, P.: Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose. 14, 585–592 (2007). https://doi.org/10.1007/s10570-007-9118-z

    Article  CAS  Google Scholar 

  146. Zuluaga, R., Putaux, J.L., Cruz, J., Vélez, J., Mondragon, I., Gañán, P.: Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr. Polym. 76, 51–59 (2009). https://doi.org/10.1016/j.carbpol.2008.09.024

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Lavoine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lavoine, N. (2023). Nanocellulose Aerogels. In: Aegerter, M.A., Leventis, N., Koebel, M., Steiner III, S.A. (eds) Springer Handbook of Aerogels. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-27322-4_27

Download citation

Publish with us

Policies and ethics