Skip to main content
Log in

The theory of generalized thermoelasticity with fractional order strain for dipolar materials with double porosity

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article continues the work on dipolar thermoelastic materials, which are a special case of multipolar continuum mechanics. This theory allows a double-porous structure: a macro-porosity related to pores in the material and a microporosity, which shows fissures in the porous skeleton. This paper constructs a mathematical model for dipolar materials, which have a double-porosity structure by considering a fractional order Duhamel–Neumann stress–strain relation. The heat conduction is described by Cattaneo’s equations. The results are the constitutive equations of the linear theory of thermoelasticity with fractional order strain. The equations are valid for anisotropic materials and are called the Duhamel–Neumann equations with fractional order. Finally, the isotropic case is considered under the conditions of plane strain in order to perform some numerical simulations for samples of porous copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Atangana A, Baleanu D (2017) Application of fixed point theorem for stability analysis of a nonlinear Schrödinger with Caputo–Liouville derivative. Filomat 31(8):2243–2248. https://www.doi.org/10.1117/12.323295

    Google Scholar 

  2. Berryman JG, Wang HF (1998) Double-porosity modeling in elastic wave propagation for reservoir characterization. In: Proceedings of mathematical methods in geophysical imaging V, vol. 3453. https://doi.org/10.1117/12.323295

  3. Bhatti MM, Rashidi MM (2016) Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. J Mol Liq 221:567–573

    Article  Google Scholar 

  4. Chirilă A (2017) Generalized micropolar thermoelasticity with fractional order strain. Bull Transilvania Univ Braşov Ser III: Math Inf Phys 10(1):83–90

    Google Scholar 

  5. Chirilă A, Agarwal RP, Marin M (2017) Proving uniqueness for the solution of the problem of homogeneous and anisotropic micropolar thermoelasticity. Bound Value Probl 2017:3. https://doi.org/10.1186/s13661-016-0734-0

    Article  Google Scholar 

  6. Ciarletta M, Ieşan D (1993) Non-classical elastic solids, Pitman research notes in mathematics series. Longman Scientific and Technical, London

    Google Scholar 

  7. Cosserat E, Cosserat F (1909) Sur la théorie des corps deformables. Dunod, Paris

    Google Scholar 

  8. Eringen AC (1999) Microcontinuum field theories, I. Foundations and solids. Springer, New York

    Book  Google Scholar 

  9. Green AE (1965) Micro-materials and multipolar continuum mechanics. Int J Eng Sci 3:533–537

    Article  Google Scholar 

  10. Green AE, Rivlin RS (1965) Multipolar continuum mechanics: functional theory I. Proc R Soc Lond A 284:303–324. https://doi.org/10.1098/rspa.1965.0065

    Article  Google Scholar 

  11. Grote MJ, Mitkova T (2012) Explicit local time-stepping methods for time-dependent wave propagation. arXiv:1205.0654v2:1-32

  12. Hetnarski RB (1996) Thermal stresses IV. Elsevier, Amsterdam

    Google Scholar 

  13. Hilfer R (2000) Applications of fractional calculus in physics. World Scientific, Singapore

    Book  Google Scholar 

  14. Ieşan D (1980) Mecanica generalizată a solidelor. Universitatea “Al. I. Cuza”, Centrul de multiplicare, Iaşi

    Google Scholar 

  15. Jiang C, Davey K, Prosser R (2017) A tessellated continuum approach to thermal analysis: discontinuity networks. Contin Mech Thermodyn 29:145–186

    Article  Google Scholar 

  16. Kilbas AA, Marichev OI, Samko SG (1993) Fractional integrals and derivatives (theory and applications). Gordon & Breach, Switzerland

    Google Scholar 

  17. Kong Q, Feng W, Zhu X, Sun C, Ma J, Wang X (2017) Fabrication and characterization of bulk nanoporous Cu with hierachical pore structure. J Mater Sci 52:12445–12454. https://doi.org/10.1007/s10853-017-1356-3

    Article  Google Scholar 

  18. Kumar R, Vohra R (2015) State space approach to plane deformation in elastic material with double porosity. Mater Phys Mech 24:9–17

    Google Scholar 

  19. Marin M (1997) On weak solutions in elasticity of dipolar bodies with voids. J Comput Appl Math 82(1–2):291–297

    Article  Google Scholar 

  20. Marin M, Ellahi R, Chirilă A (2017) On solutions of Saint-Venant’s problem for elastic dipolar bodies with voids. Carpathian J Math 33(2):199–212

    Google Scholar 

  21. Marin M (2010) Harmonic vibrations in thermoelasticity of microstretch materials. J Vib Acoust ASME 132(4):044501-1–044501-6

    Article  Google Scholar 

  22. Marin M, Nicaise S (2016) Existence and stability results for thermoelastic dipolar bodies with double porosity. Contin Mech Thermodyn 28:1645–1657

    Article  Google Scholar 

  23. Masin D, Herbstova V, Bohac J (2005) Properties of double porosity clayfills and suitable constitutive models. In: 16th International conference on soil mechanics and geotechnical engineering rotterdam, Millpress Rotterdam, Netherlands

  24. Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    Google Scholar 

  25. Mindlin RD (1963) Microstructure in linear elasticity. Columbia University, New York

    Book  Google Scholar 

  26. Plavšić M, Naerlović-Veljković N (1979) Thermodiffusion in dipolar elastic materials. In: Bulletin T. LXIV de l’Academie serbe des Sciences et des Arts, pp 29–39

  27. Podlubny I (1999) Fractional differential equations. An introduction to fractional derivatives, fractional differential equations some methods of their solution and some of their applications. Academic Press, New York

    Google Scholar 

  28. Rice RW (2005) Use of normalized porosity in models for the porosity dependence of mechanical properties. J Mater Sci 40:983–989. https://doi.org/10.1007/s10853-005-6517-0

    Article  Google Scholar 

  29. Sheikholeslami M, Bhatti MM (2017) Active method for nanofluid heat transfer enhancement by means of EHD. Int J Heat Mass Transf 109:115–122

    Article  Google Scholar 

  30. Tao XF, Zhang LP, Zhao YY (2007) Mechanical response of porous copper manufactured by lost carbonate sintering process. Mater Sci Forum 539–543:1863–1867

    Article  Google Scholar 

  31. Wagh AS (1993) Porosity dependence of thermal conductivity of ceramics and sedimentary rocks. J Mater Sci 28:3715–3721. https://doi.org/10.1007/BF00353169

    Article  Google Scholar 

  32. Xiao Z (2013) Heat transfer, fluid transport and mechanical properties of porous copper manufactured by lost carbonate sintering. Ph.D. thesis, University of Liverpool

  33. Xiao Z, Zhao Y (2013) Heat transfer coefficient of porous copper with homogeneous and hybrid structures in active cooling. J Mater Res 28(17):2545–2553

    Article  Google Scholar 

  34. Youssef H (2010) Theory of fractional order generalized thermoelasticity. J Heat Transf 132(6):1–7

    Article  Google Scholar 

  35. Youssef H (2016) Theory of generalized thermoelasticity with fractional order strain. J Vib Control 22(18):3840–3857

    Article  Google Scholar 

  36. Yu YJ, Tian XG, Lu TJ (2013) On fractional order generalized thermoelasticity with micromodeling. Acta Mech 224(12):2911–2927

    Article  Google Scholar 

  37. Zervos A (2008) Finite elements for elasticity with microstructure and gradient elasticity. Int J Numer Meth Eng 73:564–595

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for valuable comments and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adina Chirilă.

Ethics declarations

Conflict of interest

No conflict of interest exists.

Appendix

Appendix

Proof of Lemma 1

Proof

The first equation from (1) is multiplied by \({\dot{u}}_i\) and is integrated over \(\Omega \) to obtain

$$\begin{aligned} \int _{\Omega }\rho _0{\dot{u}}_i\ddot{u}_i \, \mathrm {d}V = \int _{\Omega } (t_{ji}+\eta _{ji})_{,j}{\dot{u}}_i \, \mathrm {d}V+\int _{\Omega }\rho _0 F_i{\dot{u}}_i \, \mathrm {d}V. \end{aligned}$$
(53)

The second equation from (1) is multiplied by \({\dot{\phi }}_{jk}\). Then, we sum up over j and k and integrate over \(\Omega \) to obtain

$$\begin{aligned} \int _{\Omega } I_{ks}\ddot{\phi }_{js}\dot{\phi }_{jk} \, \mathrm {d}V = \int _{\Omega }(\mu _{ijk,i}\dot{\phi }_{jk}+\eta _{jk}\dot{\phi }_{jk}+\rho _0 M_{jk}\dot{\phi }_{jk}) \, \mathrm {d}V. \end{aligned}$$
(54)

The first equation from (2) is multiplied by \(\dot{\varphi }\) and is integrated over \(\Omega \) to obtain

$$\begin{aligned} \int _{\Omega }\kappa _1\ddot{\varphi }\dot{\varphi } \, \mathrm {d}V = \int _{\Omega }(\sigma _{i,i}\dot{\varphi }+\xi \dot{\varphi }+\rho _0 G\dot{\varphi } ) \, \mathrm {d}V. \end{aligned}$$
(55)

The second equation from (2) is multiplied by \(\dot{\psi }\) and is integrated over \(\Omega \) to obtain

$$\begin{aligned} \int _{\Omega }\kappa _2\ddot{\psi }\dot{\psi } \, \mathrm {d}V = \int _{\Omega }(\tau _{i,i}\dot{\psi }+\zeta \dot{\psi }+\rho _0 L\dot{\psi } ) \, \mathrm {d}V. \end{aligned}$$
(56)

We substitute relations (53), (54), (55) and (56) into the principle of conservation of energy (11) to obtain

$$\begin{aligned} \begin{aligned}&\int _{\Omega } (t_{ji}+\eta _{ji})_{,j}{\dot{u}}_i \, \mathrm {d}V + \int _{\Omega }\rho _0 F_i{\dot{u}}_i \, \mathrm {d}V \\&+ \int _{\Omega }( \mu _{ijk,i}\dot{\phi }_{jk}+\eta _{jk}\dot{\phi }_{jk}+\rho _0 M_{jk}{\dot{\phi }}_{jk}) \, \mathrm {d}V \\&+ \int _{\Omega }(\sigma _{i,i}\dot{\varphi }+\xi \dot{\varphi }+\rho _0 G\dot{\varphi })\, \mathrm {d}V+ \int _{\Omega }(\tau _{i,i}\dot{\psi }+\zeta \dot{\psi }+\rho _0 L\dot{\psi })\, \mathrm {d}V\\&+ \int _{\Omega }\rho _0{\dot{e}}\, \mathrm {d}V= \int _{\Omega }(\rho _0 F_i{\dot{u}}_i+\rho _0 M_{jk}\dot{\phi }_{jk}+\rho _0 G\dot{\varphi } + \rho _0 L\dot{\psi }+S) \, \mathrm {d}V \\&+\int _{\partial \Omega }( t_i{\dot{u}}_i+\mu _{jk}\dot{\phi }_{jk}+\sigma \dot{\varphi } +\tau \dot{\psi }+q)\, \mathrm {d}A \end{aligned} \end{aligned}$$
(57)

By doing integration by parts

$$\begin{aligned} \int _{\Omega }(t_{ji}+\eta _{ji})_{,j}{\dot{u}}_i \, \mathrm {d}V = &\,\,{} \int _{\partial \Omega } t_i{\dot{u}}_i \, \mathrm {d}A- \int _{\Omega }(t_{ji}+\eta _{ji}){\dot{u}}_{i,j}\, \mathrm {d}V \end{aligned}$$
(58)
$$\begin{aligned} \int _{\Omega }\mu _{ijk,i}{\dot{\phi }}_{jk}\, \mathrm {d}V = &\,\,{} \int _{\partial \Omega }\mu _{jk}\dot{\phi }_{jk} \, \mathrm {d}A- \int _{\Omega }\mu _{ijk}\dot{\phi }_{jk,i} \, \mathrm {d}V \end{aligned}$$
(59)
$$\begin{aligned} \int _{\Omega } \sigma _{i,i}\dot{\varphi } \, \mathrm {d}V = &\,\,{} \int _{\partial \Omega }\sigma \dot{\varphi } \, \mathrm {d}A- \int _{\Omega }\sigma _i\dot{\varphi }_{,i} \, \mathrm {d}V \end{aligned}$$
(60)
$$\begin{aligned} \int _{\Omega }\tau _{i,i}\dot{\psi }\, \mathrm {d}V = &\,\,{} \int _{\partial \Omega }\tau \dot{\psi } \, \mathrm {d}A- \int _{\Omega } \tau _i\dot{\psi }_{,i} \, \mathrm {d}V \end{aligned}$$
(61)

and by substituting (58), (59), (60) and (61) into (57), we obtain

$$\begin{aligned} \begin{aligned}&-\int _{\Omega }(t_{ji}+\eta _{ji}){\dot{u}}_{i,j} \, \mathrm {d}V-\int _{\Omega }\mu _{ijk}\dot{\phi }_{jk,i}\, \mathrm {d}V+ \int _{\Omega }\eta _{jk}\dot{\phi }_{jk}\, \mathrm {d}V \\&-\int _{\Omega }\sigma _i\dot{\varphi }_{,i}\, \mathrm {d}V+ \int _{\Omega }\xi \dot{\varphi }\, \mathrm {d}V-\int _{\Omega }\tau _i\dot{\psi }_{,i}\, \mathrm {d}V+ \int _{\Omega }\zeta \dot{\psi }\, \mathrm {d}V \\&+\int _{\Omega }\rho _0{\dot{e}} \, \mathrm {d}V= \int _{\Omega } S\, \mathrm {d}V+\int _{\partial \Omega }q \, \mathrm {d}A \end{aligned} \end{aligned}$$
(62)

which can be rewritten as

$$\begin{aligned} \begin{aligned}&\int _{\Omega } \left[\rho _0{\dot{e}}- (t_{ji}+\eta _{ji}){\dot{u}}_{i,j}-\mu _{ijk}\dot{\phi }_{jk,i}+\eta _{jk}{\dot{\phi }}_{jk}-\sigma _i \dot{\varphi }_{,i}+\xi \dot{\varphi }\right.\\& \quad \left.- \tau _i\dot{\psi }_{,i}+\zeta \dot{\psi }-q_{i,i}-\rho _0Q\right] \, \mathrm {d}V=0 \end{aligned} \end{aligned}$$
(63)

or in the pointwise form

$$\begin{aligned} \begin{aligned}&\rho _0{\dot{e}}= (t_{ji}+\eta _{ji}){\dot{u}}_{i,j}+\mu _{ijk}\dot{\phi }_{jk,i}-\eta _{jk}\dot{\phi }_{jk}+\sigma _i\dot{\varphi }_{,i}-\xi \dot{\varphi } \\& \qquad +\tau _i\dot{\psi }_{,i}-\zeta \dot{\psi }+q_{i,i}+\rho _0 Q \end{aligned} \end{aligned}$$
(64)

We obtain from Eqs. (64) and (14)

$$\begin{aligned} \begin{aligned}&\rho _0{\dot{\phi }}= (t_{ji}+\eta _{ji}){\dot{u}}_{i,j}+\mu _{ijk}\dot{\phi }_{jk,i}- \eta _{jk}\dot{\phi }_{jk}+\sigma _i\dot{\varphi }_{,i}-\xi \dot{\varphi } \\& \qquad +\tau _i\dot{\psi }_{,i}-\zeta \dot{\psi }+q_{i,i}+\rho _0 Q-\rho _0\eta {\dot{T}}- \rho _0 T\dot{\eta } \end{aligned} \end{aligned}$$
(65)

\(\square \)

Proof of Theorem 1

Proof

We obtain from the first relation in (15) and the chain rule

$$\begin{aligned} \begin{aligned}&\rho _0\dot{\phi }=\rho _0 \frac{\partial \phi }{\partial \tilde{\varepsilon }_{ij}}\tilde{\dot{\varepsilon }}_{ij}+ \rho _0 \frac{\partial \phi }{\partial \kappa _{ij}} \dot{\kappa }_{ij}+\rho _0\frac{\partial \phi }{\partial \chi _{ijk}}\dot{\chi }_{ijk}+ \rho _0\frac{\partial \phi }{\partial \varphi }\dot{\varphi }+\rho _0 \frac{\partial \phi }{\partial \varphi _{,i}}\dot{\varphi }_{,i} \\& \qquad + \rho _0\frac{\partial \phi }{\partial \psi }{\dot{\psi }}+\rho _0 \frac{\partial \phi }{\partial \psi _{,i}}{\dot{\psi }}_{,i}+ \rho _0\frac{\partial \phi }{\partial T}{\dot{T}}+\rho _0\frac{\partial \phi }{\partial T_{,i} }{\dot{T}}_{,i} \end{aligned} \end{aligned}$$
(66)

By comparing formulae (19) \(\rho _0\dot{\phi }=t_{ij}\dot{\tilde{\varepsilon }}_{ij}+\eta _{ij}\dot{\kappa }_{ij}+\mu _{ijk}\dot{\chi }_{ijk}+ \sigma _i\dot{\varphi }_{,i}-\xi \dot{\varphi }+\tau _i\dot{\psi }_{,i}-\zeta \dot{\psi }+q_{i,i}+\rho _0Q- \rho _0\eta {\dot{T}}-\rho _0 T\dot{\eta }\) and (66), we obtain

$$\begin{aligned} \begin{aligned}&t_{ij}=\rho _0\frac{\partial \phi }{\partial {\tilde{\varepsilon }}_{ij}}\quad \eta _{ij}= \rho _0 \frac{\partial \phi }{\partial \kappa _{ij}} \quad \mu _{ijk}=\rho _0 \frac{\partial \phi }{\partial \chi _{ijk}} \\&\xi =-\rho _0 \frac{\partial \phi }{\partial \varphi } \quad \zeta =- \rho _0 \frac{\partial \phi }{\partial \psi } \\&\sigma _i=\rho _0 \frac{\partial \phi }{\partial \varphi _{,i}} \quad \tau _i=\rho _0 \frac{\partial \phi }{\partial \psi _{,i}} \\&\eta =-\frac{\partial \phi }{\partial T} \\&\frac{\partial \phi }{\partial T_{,i}}=0 \end{aligned} \end{aligned}$$
(67)

and

$$\begin{aligned} q_{i,i}+\rho _0 Q-\rho _0 T\dot{\eta } =0. \end{aligned}$$
(68)

The proof is complete if we compute the derivatives above by formula (17). \(\square \)

Proof of Theorem 2

Proof

Using the equality for \(\eta \) from (67) and (68), we obtain

$$\begin{aligned} \begin{aligned}&-q_{i,i} = \rho _0 Q+\rho _0 T \left( \frac{\partial ^2 \phi }{\partial \tilde{\varepsilon }_{ij}\partial T} \dot{\tilde{\varepsilon }}_{ij}+ \frac{\partial ^2\phi }{\partial \kappa _{ij}\partial T }\dot{\kappa }_{ij}+ \frac{\partial ^2 \phi }{\partial \chi _{ijk}\partial T}\dot{\chi }_{ijk}\right. \\& \qquad \quad +\left. \frac{\partial ^2 \phi }{\partial \varphi \partial T}\dot{\varphi }+ \frac{\partial ^2\phi }{\partial \varphi _{,i}\partial T}\dot{\varphi }_{,i}+ \frac{\partial ^2 \phi }{\partial \psi \partial T}\dot{\psi }+\frac{\partial ^2 \phi }{\partial \psi _{,i}\partial T}{\dot{\psi }}_{,i}+ \frac{\partial ^2\phi }{\partial T^2}{\dot{T}} \right) \end{aligned} \end{aligned}$$
(69)

By using Eqs. (69) and (17), we obtain the gradient of the heat flux in the form

$$\begin{aligned} - q_{i,i}=\rho _0 Q-T \alpha _{ij}\dot{\tilde{\varepsilon }}_{ij} -T\beta _{ij}\dot{\kappa }_{ij}-T\gamma _{ijk}\dot{\chi }_{ijk}-T\gamma _1\dot{\varphi }-T\gamma _2\dot{\psi } -aT{\dot{T}} \end{aligned}$$
(70)

Let \(T\approx T_0\) for linearity, where \(T_0\) is the constant absolute temperature of the body in its reference state. Therefore, we get

$$\begin{aligned} \begin{aligned}&-q_{i,i}=\rho _0 Q- T_0 \alpha _{ij} \dot{\tilde{\varepsilon }}_{ij} -T_0\beta _{ij}\dot{\kappa }_{ij}-T_0 \gamma _{ijk}\dot{\chi }_{ijk} \\& \qquad \quad -T_0\gamma _1\dot{\varphi }- T_0\gamma _2\dot{\psi } -a T_0{\dot{T}} \end{aligned} \end{aligned}$$
(71)

The non-Fourier heat equations give

$$\begin{aligned} \begin{aligned}&(K_{ij} T_{,j})_{,i}=-q_{i,i}-\tau _0{\dot{q}}_{i,i}\\& \qquad \quad \,\,=\rho _0 Q-T_0 \alpha _{ij} \dot{\tilde{\varepsilon }}_{ij}-T_0 \beta _{ij}\dot{\kappa }_{ij}-T_0\gamma _{ijk}\dot{\chi }_{ijk}- T_0\gamma _1\dot{\varphi } \\& \qquad \qquad -T_0\gamma _2\dot{\psi }-a T_0{\dot{T}} +\tau _0\left( \rho _0\dot{Q}-T_0 \alpha _{ij}\ddot{\tilde{\varepsilon }}_{ij}- T_0\beta _{ij}\ddot{\kappa }_{ij} \right. \\& \qquad \qquad \left. -T_0\gamma _{ijk}\ddot{\chi }_{ijk}-T_0\gamma _1\ddot{\varphi }-T_0\gamma _2\ddot{\psi }-aT_0\ddot{T} \right) \end{aligned} \end{aligned}$$
(72)

\(\square \)

Closed-form solution in the isotropic case

We consider the problem of plane strain biaxial deformation of a rectangular specimen as in [37] for isotropic dipolar elasticity with double porosity in the stationary case. We consider that \(\tau =0\), \(\theta =0\) and we assume that \(u_1(x_1)=c_1 x_1\), \(u_2(x_2)=c_2 x_2\), \(\phi _{11}=c_3\), \(\phi _{22}=c_4\), \(\phi _{12}=\phi _{21}=0\), \(\varphi =c_5\) and \(\psi =c_6\), where \(c_i\) are constants. These satisfy the displacement boundary conditions \(u_1(x_1=0)=0\) and \(u_2(x_2=0)=0\). Following [37], we show in the sequel that they also satisfy the governing equations and the remaining boundary conditions, so that they must be the unique solution of the problem.

By substituting the expressions above into the equations from Theorem 4, we are only left with Eqs. (46), (49), (51) and (52), which become

$$\begin{aligned} c_1(b_2+b_3+2 g_2)-c_3(b_2+b_3) = &\,\,{} 0 \end{aligned}$$
(73)
$$\begin{aligned} c_2(b_2+b_3+2 g_2)-c_4(b_2+b_3) = &\,\,{} 0 \end{aligned}$$
(74)
$$\begin{aligned} d_1(c_1+c_2)+\alpha _1 c_5+\alpha _3 c_6 = &\,\,{} 0 \end{aligned}$$
(75)
$$\begin{aligned} d_2(c_1+c_2)+\alpha _3 c_5+\alpha _2 c_6 = &\,\,{} 0 \end{aligned}$$
(76)

The boundary conditions are \(t_{22}+\eta _{22}=\tilde{t}_2\) at the top and \(t_{11}+\eta _{11}=0\) at the sides. Hence, we obtain by virtue of the expressions for \(t_{ij}\) and \(\eta _{ij}\)

$$\begin{aligned}&c_1\lambda +c_2(\lambda +2\mu +4 g_2+b_2+b_3)-c_4(2g_2+b_2+b_3)+c_5d_1+c_6 d_2=\tilde{t}_2 \end{aligned}$$
(77)
$$\begin{aligned}&c_1(\lambda +2\mu +4g_2+b_2+b_3)+c_2\lambda -c_3(2g_2+b_2+b_3)+c_5d_1+c_6d_2=0 \end{aligned}$$
(78)

Then, we solve the above linear system of six equations for \(c_i, i=1,6\), and we substitute into the definitions of the functions, which yields

$$\begin{aligned}&\begin{aligned}&\Delta _1 = - 2\alpha _3(b_2+b_3)d_1d_2+\alpha _1(b_2+b_3)d_2^2 \\& \qquad +\alpha _3^2(-2g_2^2+(b_2+b_3)(\lambda +\mu )) \\& \qquad +\alpha _2(2\alpha _1 g_2^2 +b_2 (d_1^2-\alpha _1(\lambda +\mu ))+b_3(d_1^2-\alpha _1(\lambda +\mu ))) \end{aligned} \end{aligned}$$
(79)
$$\Delta = 4(2g_2^2-(b_2+b_3)\mu )\Delta _1 $$
(80)
$$\begin{aligned}&u_1 = \frac{1}{\Delta }(b_2+b_3)^2(-2\alpha _3d_1d_2+\alpha _1d_2^2+\alpha _3^2\lambda +\alpha _2(d_1^2-\alpha _1\lambda ))\tilde{t}_2 x_1 \end{aligned}$$
(81)
$$\begin{aligned}&\begin{aligned}&u_2 = - \frac{1}{\Delta }(b_2+b_3)(-2\alpha _3(b_2+b_3)d_1d_2+\alpha _1(b_2+b_3)d_2^2\\& \qquad +\alpha _3^2(-4g_2^2+(b_2+b_3)(\lambda +2\mu )) \\& \qquad +\alpha _2(4\alpha _1 g_2^2+(d_1^2-\alpha _1 (\lambda +2\mu ))(b_2+b_3)\tilde{t}_2 x_2 \end{aligned} \end{aligned}$$
(82)
$$\begin{aligned}&\phi _{11}=\frac{1}{\Delta }(b_2+b_3)(b_2+b_3+2 g_2) (-2\alpha _3 d_1 d_2+\alpha _1 d_2^2+ \alpha _3^2\lambda +\alpha _2(d_1^2-\alpha _1\lambda ))\tilde{t}_2 \end{aligned}$$
(83)
$$\begin{aligned}&\begin{aligned}&\phi _{22}=-\frac{1}{\Delta }(b_2+b_3+2 g_2)(-2\alpha _3(b_2+b_3)d_1 d_2+\alpha _1(b_2+b_3)d_2^2\\&\qquad \,\,+ \alpha _3^2(-4g_2^2+(b_2+b_3)(\lambda +2\mu ))\\& \qquad \,\, +\alpha _2(4\alpha _1 g_2^2+ (d_1^2-\alpha _1(\lambda +2\mu ))(b_2+b_3)))\tilde{t}_2 \end{aligned} \end{aligned}$$
(84)
$$\begin{aligned}&\varphi =\frac{1}{2\Delta _1}(b_2+b_3)(\alpha _2 d_1-\alpha _3 d_2) \tilde{t}_2 \end{aligned}$$
(85)
$$\begin{aligned}&\psi =-\frac{1}{2\Delta _1}(b_2+b_3)(\alpha _3 d_1-\alpha _1 d_2)\tilde{t}_2. \end{aligned}$$
(86)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirilă, A., Marin, M. The theory of generalized thermoelasticity with fractional order strain for dipolar materials with double porosity. J Mater Sci 53, 3470–3482 (2018). https://doi.org/10.1007/s10853-017-1785-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1785-z

Navigation