Skip to main content
Log in

Porosity dependence of thermal conductivity of ceramics and sedimentary rocks

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The connected grain model of porous ceramics, developed earlier to explain porosity dependence of the elastic modulus, is extended to study thermal transport. The porosity and grain-size dependence of the thermal conductivity is calculated in terms of a power law. The exponent of the power law is dependent on the skewness of the grain-size distribution. The formalism is compared with the experimental results for isometric spherical-pore distribution in alumina, random-pore distribution in alumina, uranium dioxide and yttria-stabilized zirconia, sedimentary rocks and bricks. Good agreements are found between the experimental results and theoretical predictions based on the microstructure of the materials and their porosity dependence of the elastic modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. KREITZ, R. E. FISHER and J. G. BEETZ, Ceram. Bull. 69 (1990) 1690.

    Google Scholar 

  2. M. A. ALVIN, T. E. LIPPERT and J. E. LANE, ibid. 70 (1991) 1491.

    CAS  Google Scholar 

  3. J. MECHOLSKY Jr, ibid. 68 (1989) 369.

    Google Scholar 

  4. G. C. WICKS and W. A. ROSS (eds), “Nuclear Waste Management, Advances in Ceramics”, Vol. 8, (American Ceramic Society, Westerville, OH, (1984) p. 746.

    Google Scholar 

  5. A. EUCKEN, Ceram. Abstr. 11 (1932) 576.

    Google Scholar 

  6. Idem, ibid. 12 (1933) 231.

    Google Scholar 

  7. H. W. RUSSELL, J. Amer. Ceram. Soc. 18 (1935) 1.

    Article  CAS  Google Scholar 

  8. Arthur L. LOEB, ibid. 37 (1954) 96.

    Article  CAS  Google Scholar 

  9. M. RIBAUD, Chaleur Ind. 18 (1937) 36.

    CAS  Google Scholar 

  10. J. B. AUSTIN, Ceram. Abstr. 20 (1941) 45.

    Google Scholar 

  11. L. R. BARRETT, Trans. Brit. Ceram. Soc. 48 (1949) 235.

    CAS  Google Scholar 

  12. M. I. AIVAZOV and I. A. DOMASHNEV, Poroshkovaya Met. 8 (1968) 51.

    CAS  Google Scholar 

  13. J. FRANCL and W. D. KINGERY, J. Amer. Ceram. Soc. 37 (1954) 99.

    Article  CAS  Google Scholar 

  14. J. D. McCLELLAND, “Materials and Structures”, Physical Measurements Program, US Air Force Report No. TDR — 930 TR-1 (1962) p. 2240.

  15. Vladimir V. MIRKOVICH, High Temp. High Press. 8 (1976) 231.

    CAS  Google Scholar 

  16. M. V. SWAIN, L. F. JOHNSON, R. SYED and D. P. H. HASSELMAN, J. Mater. Sci. Lett. 5 (1986) 799.

    Article  CAS  Google Scholar 

  17. A. M. ROSS, “The Dependence of the Thermal Conductivity of Uranium Dioxide on Density, Microstructure, Stoichiometry and Thermal-Neutron Irradiation”, Atomic Energy of Canada Ltd, CRFD — 817 (1960).

  18. A. SUGIWARA and Y. YOSHIZAWA, J. Appl. Phys. 33 (1962) 3135.

    Article  Google Scholar 

  19. W. WOODSIDE and J. H. MESSMER, ibid. 32 (1961) 1699.

    Article  Google Scholar 

  20. J. B. AUSTIN, in “Symposium on Thermal Insulating Materials” (American Society for Testing and Materials, Philadelphia, PA, (1939) p. 3.

    Google Scholar 

  21. S. K. RHEE, Mater. Sci. Engng 20 (1975) 89.

    Article  CAS  Google Scholar 

  22. A. S. WAGH, J. P. SINGH and R. B. POEPPEL, J. Mater. Sci. 26 (1991) 3862.

    Article  CAS  Google Scholar 

  23. C. KITTEL, “Introduction to Solid State Physics” (John Wiley & Sons Inc., 1970)

  24. P. WONG, J. KOPLIK and J. P. TOMANIC, Phys. Rev B 30 (1984) 6606.

    Article  Google Scholar 

  25. ARUN S. WAGH, J. P. SINGH and R. B. POEPPEL, J. Mater. Sci. (in print).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagh, A.S. Porosity dependence of thermal conductivity of ceramics and sedimentary rocks. JOURNAL OF MATERIALS SCIENCE 28, 3715–3721 (1993). https://doi.org/10.1007/BF00353169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00353169

Keywords

Navigation