Skip to main content
Log in

Use of normalized porosity in models for the porosity dependence of mechanical properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The use of normalized porosity in models for the porosity dependence of mechanical properties is addressed first for the frequently used power law expression for such dependence, i.e., E/E0 = (1−P)n where E is the property of interest at any volume fraction porosity (P) and E0 is the value of E at P = 0. Normalizing P by PC, the value of P at which the property of interest inherently goes to zero, giving E/E0 = (1−P/PC)n, clearly calls attention to the importance of PC values < 1 (e.g., potentially as low as ∼ 0.2), a fact long known but inadequately recognized. Serious problems from the arbitrary use of both n and PC as fitting parameters with little or no guidance as to the dependence that n and PC (which is microstructurally sensitive) have on the type of porosity are shown. Further, porosity normalization of the power law model indicates at best limited compression of different porosity dependences into a single universal porosity dependence function and little distinguishing of property dependences as a function of the type of porosity. However, normalized porosity of minimum solid area (MSA) models gives a single universal porosity dependence. The difference in responses to P normalization of the two modeling approaches is attributed to their being based respectfully on little or no pore character and on detailed pore character. Thus, P normalization may be a valuable tool for evaluating porosity models, but must be applied in a more rigorous fashion, i.e., PC determined primarily by measurement and correlation with the type of porosity (as with MSA models) and not as an arbitrary fitting parameter as used in the evaluations of the power law model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Bert, J. Mater. Sci. 20 (1985) 2220.

    Article  Google Scholar 

  2. R. W. Rice, “Porosity of Ceramics” (Marcel Dekker, New York, 1998).

    Google Scholar 

  3. K. K. Phani, J. Mater. Sci. Lett. 5 (1986) 747.

    Article  Google Scholar 

  4. K. K. Phani and S. K. Niyogi, J. Mater. Sci. 22 (1987) 257.

    Article  Google Scholar 

  5. K. K. Phani and S. K. Niyogi, J. Amer. Cer. Soc. C-362-66 (1987).

    Google Scholar 

  6. D. C. Lam, F. F. Lange and A. G. Evans, J. Mater. Sci. 77(8) (1994) 2113.

    Google Scholar 

  7. T. Ostrowski, A. Ziegler, R. J. Bordia and J. Rödel, J. Mater. Sci. 81(7) (1998) 1852.

    Google Scholar 

  8. T. Ostrowski and J. Rödel, J. Mater. Sci. 82(11) (1999) 3080.

    Google Scholar 

  9. A. P. Roberts and E. J. Garboczi, J. Mater. Sci. 83(12) (2000) 3041.

    Google Scholar 

  10. A. R. Day, K. A. Snyder, E. J. Garboczi and M. F. Thorpe, J. Mech. Phys. Solids 40(5) (1992) 1031.

    Article  Google Scholar 

  11. K. A. Snyder, E. J. Garboczi and A. R. Day, J. Appl. Phys. 72(12) (1992) 5948.

    Article  Google Scholar 

  12. J. Kováčik, J. Mater. Sci. Lett. 20 (2001) 1953.

    Article  Google Scholar 

  13. R. W. Rice, J. Mater. Sci. 31 (1996) 102.

    Article  Google Scholar 

  14. R. W. Rice, J. Mater. Sci. 31 (1996) 1509.

    Article  Google Scholar 

  15. L. Coronel, J. P. Jernot and F. Osterstock, J. Mater. Sci. 25 (1990) 4866.

    Article  Google Scholar 

  16. P. A. Berge, B. P. Bonner and J. A. Berryman, Geophy. 60(1) (1995) 108.

    Article  Google Scholar 

  17. D. J. Green, C. Nader, R. Brezny in “The Elastic Behavior of Partially-Sintered Alumina, Sintering of Advanced Ceramics,” edited by C. A. Handwerker, J. E. Blendell, W. Kaysser (Am. Cer. Soc., OH Westerville 1990) p. 347.

  18. G. M. Tomilov, Tr. from Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy 13(1) (1977) 117.

    Google Scholar 

  19. J. N. Harris and E. A. Welsh “Fused Silica Design Manual, I,” NSC Special Publication (1973) p. 5.

  20. P. Wagner, J. A. O’Rourke and P. E. Armstrong, J. Amer. Cer. Soc. 55(4) (1972) 214.

    Google Scholar 

  21. E. A. Belskaya and A. S. Tarabanov “Experimental Studies Concerning the Electrical Conductivity of High-Porosity Carbon-Graphitic Materials,” Institute of High Temperatures, Academy of Sciences of the USSR, Tr. from Inzhenerno-Fizicheskii Zhurnal (1971) Vol. 20, No. 4, p. 654.

  22. B. Bridge and R. Round, J. Mat. Sci. 8 (1989) 691.

    Google Scholar 

  23. J. P. Singh, H. J. Leu, R. P. Poeppel, E. Van Voorhees, G. T. Goudey, K. Winsley and D. Shi, J. Appl. Phys. 66(7) (1989) 3154.

    Article  Google Scholar 

  24. N. McAlford, J. D. Birchall, W. J. Clegg, M.A. Harmer, K. Kendall and D. H. Jones, J. Mat. Sci. 23 (1988) 761.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rice, R.W. Use of normalized porosity in models for the porosity dependence of mechanical properties. J Mater Sci 40, 983–989 (2005). https://doi.org/10.1007/s10853-005-6517-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-6517-0

Keywords

Navigation