Skip to main content
Log in

Determination of material properties of thin films and coatings using indentation tests: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents a review of the mechanical characterisation of thin film and coated systems using indentation tests. The potential in assessing mechanical properties of films and coatings using indentation tests has received a great deal of attention since this knowledge is vital for predicting their performance. The relevant theoretical background is discussed. Experimental work, numerical studies and data interpretation techniques for indentation on single bulk materials and thin films are discussed. Surface conditions, indentation depths and indentation size effects for indentation tests on thin films and coated systems are discussed. Data interpretation methods for indentation on films and coated systems are reviewed with a discussion on their limitations. Other studies in this field concerning the substrate effects and critical indentation depth ratios are also discussed. Suggestions for future experimental work and data interpretation are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Reproduced from [1] with permission from Cambridge University Press

Figure 2

Reproduced from [1] with permission from Cambridge University Press

Figure 3
Figure 4
Figure 5

Reproduced from [1] with permission from Cambridge University Press

Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Reproduced from [70] with permission from Elsevier

Figure 15
Figure 16

Reproduced from [84] with permission from Elsevier

Similar content being viewed by others

References

  1. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  Google Scholar 

  2. Vaidyanathan R, Dao M, Ravichandran G, Suresh S (2001) Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater 49:3781–3789

    Article  Google Scholar 

  3. Su C, Anand L (2006) Plane strain indentation of a Zr-based metallic glass: experiments and numerical simulation. Acta Mater 54:179–189

    Article  Google Scholar 

  4. Zhang J, Niebur GL, Ovaert TC (2008) Mechanical property determination of bone through nano- and micro-indentation testing and finite element simulation. J Biomech 41:267–275

    Article  Google Scholar 

  5. Misra RDK, Venkatsurya P, Wu KM, Karjalainen LP (2013) Ultrahigh strength martensite-austenite dual-phase steels with ultrafine structure: the response to indentation experiments. Mater Sci Eng A 560:693–699

    Article  Google Scholar 

  6. Olofinjana AO, Bell JM, Jamting AK (2000) Evaluation of the mechanical properties of sol–gel-deposited titania films using ultra-micro-indentation method. Wear 241:174–179

    Article  Google Scholar 

  7. Stauss S, Schwaller P, Bucaille JL, Rabe R, Rohr L, Michler J, Blank E (2003) Determining the stress-strain behaviour of small devices by nanoindentation in combination with inverse methods. Microelectron Eng 67–68:818–825

    Article  Google Scholar 

  8. Hu Y, Shen L, Yang H, Wang M, Liu T, Liang T, Zhang J (2006) Nanoindentation studies on nylon 11/clay nanocomposites. Polym Testing 25:492–497

    Article  Google Scholar 

  9. Harsono E, Swaddiwudhipong S, Liu ZS, Shen L (2011) Numerical and experimental indentation tests considering size effects. Int J Solids Struct 48:972–978

    Article  Google Scholar 

  10. Karimzadeh A, Ayatollahi MR, Alizadeh M (2014) Finite element simulation of nano-indentation experiment on aluminum 1100. Comput Mater Sci 81:595–600

    Article  Google Scholar 

  11. Kot M, Rakowski W, Lackner JM, Major Ł (2013) Analysis of spherical indentations of coating-substrate systems: experiments and finite element modeling. Mater Des 43:99–111

    Article  Google Scholar 

  12. Li W, Huang C, Yu M, Liao H (2013) Investigation on mechanical property of annealed copper particles and cold sprayed copper coating by a micro-indentation testing. Mater Des 46:219–226

    Article  Google Scholar 

  13. Piana LA, Pérez REA, Souza RM, Kunrath AO, Strohaecker TR (2005) Numerical and experimental analyses on the indentation of coated systems with substrates with different mechanical properties. Thin Solid Films 491:197–203

    Article  Google Scholar 

  14. Venkateswaran P, Xu ZH, Li X, Reynolds AP (2009) Determination of mechanical properties of Al–Mg alloys dissimilar friction stir welded interface by indentation methods. J Mater Sci 44:4140–4147. doi:10.1007/s10853-009-3607-4

    Article  Google Scholar 

  15. Monclus MA, Young TJ, Di Maio D (2010) AFM indentation method used for elastic modulus characterization of interfaces and thin layers. J Mater Sci 45:3190–3197. doi:10.1007/s10853-010-4326-6

    Article  Google Scholar 

  16. Okayasu M, Takasu S, Mizuno M (2012) Relevance of instrumented nano-indentation for the assessment of the mechanical properties of eutectic crystals and α-Al grain in cast aluminum alloys. J Mater Sci 47:241–250. doi:10.1007/s10853-011-5791-2

    Article  Google Scholar 

  17. Zhu LN, Xu BS, Wang HD, Wang CB, Yang DX (2011) Measurement of mechanical properties of 1045 steel with significant pile-up by sharp indentation. J Mater Sci 46:1083–1086. doi:10.1007/s10853-010-4876-7

    Article  Google Scholar 

  18. Cheng W, Wang M, Xu C, Zhang J, Liang W, You B, Nie K (2015) Microstructure characterization and indentation hardness testing behavior of Mg–8Sn–xAl–1Zn alloys. J Mater Sci 30:1043–1048. doi:10.1007/s11595-015-1270-y

    Google Scholar 

  19. Nakayama T, Sakaue K, Ogawa T, Kobayashi Y, Teratani T (2009) Evaluations of mechanical properties of DLC film by indentation method and the effect of substrate. Zairyo J Soc Mater Sci 58:833–840

    Article  Google Scholar 

  20. Bhushan B, Kulkarni AV, Bonin W, Wyrobek JT (1996) Nanoindentation and picoindentation measurements using a capacitive transducer system in atomic force microscopy. Philos Mag A 74:1117–1128

    Article  Google Scholar 

  21. Newey D, Wilkins MA, Pollock HM (1982) An ultra-low-load penetration hardness tester. J Phys E Sci Instrum 15:119–122

    Article  Google Scholar 

  22. Bell TJ, Bendeli A, Field JS, Swain MV, Thwaite EG (1992) The determination of surface plastic and elastic properties by ultra micro-indentation. Metrologia 28:463–469

    Article  Google Scholar 

  23. Randall NX, Consiglio R (2000) Nanoscratch tester for thin film mechanical properties characterization. Rev Sci Instrum 71:2796–2799

    Article  Google Scholar 

  24. Kang JJ, Becker AA, Sun W (2012) determining elastic-plastic properties from indentation data obtained from finite element simulations and experimental results. Int J Mech Sci 62:34–46

    Article  Google Scholar 

  25. Kang JJ, Becker AA, Sun W (2013) Determination of elastic and viscoplastic material properties obtained from indentation tests using a combined finite element analysis and optimization approach. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 229:1–14

    Google Scholar 

  26. Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S (2001) Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater 49:3899–3918

    Article  Google Scholar 

  27. Zhao M, Ogasawara N, Chiba N, Chen X (2006) A new approach to measure the elastic–plastic properties of bulk materials using spherical indentation. Acta Mater 54:23–32

    Article  Google Scholar 

  28. Ogasawara N, Chiba N, Chen X (2006) Measuring the plastic properties of bulk materials by single indentation test. Scripta Mater 54:65–70

    Article  Google Scholar 

  29. Antunes JM, Menezes LF, Fernandes JV (2006) Three-dimensional numerical simulation of Vickers indentation tests. Int J Solids Struct 43:784–806

    Article  Google Scholar 

  30. Luo J, Lin J, Dean TA (2006) A study on the determination of mechanical properties of a power law material by its indentation force–depth curve. Phil Mag 86:2881–2905

    Article  Google Scholar 

  31. Gamonpilas C, Busso EP (2007) Characterization of elastoplastic properties based on inverse analysis and finite element modeling of two separate indenters. J Eng Mater Technol 129:603–608

    Article  Google Scholar 

  32. Luo J, Lin J (2007) A Study on the determination of plastic properties of metals by instrumented indentation using two sharp indenters. Int J Solids Struct 44:5803–5817

    Article  Google Scholar 

  33. Le MQ (2008) A Computational study on the instrumented sharp indentations with dual indenters. Int J Solids Struct 45:2818–2835

    Article  Google Scholar 

  34. Farrissey LM, McHugh PE (2005) Determination of elastic and plastic material properties using indentation: development of method and application to a thin surface coating. Mater Sci Eng A 399:254–266

    Article  Google Scholar 

  35. Rico A, Gómez-García J, Múnez CJ, Poza P, Utrilla V (2009) Mechanical properties of thermal barrier coatings after isothermal oxidation. Surf Coat Technol 203:2307–2314

    Article  Google Scholar 

  36. Łatka L, Chicot D, Cattini A, Pawłowski L, Ambroziak A (2013) Modeling of elastic modulus and hardness determination by indentation of porous yttria stabilized zirconia coatings. Surf Coat Technol 220:131–139

    Article  Google Scholar 

  37. Fischer-Cripps AC (2006) Critical Review of analysis and interpretation of nanoindentation test data. Surf Coat Technol 200:4153–4165

    Article  Google Scholar 

  38. Pharr GM, Oliver WC, Brotzen FR (1992) On the generality of the relationship among contact stiffness, contact area, and elastic-modulus during indentation. J Mater Res 7:613–617

    Article  Google Scholar 

  39. Love AEH (1929) The stress produced in a semi-infinite solid by pressure on part of the boundary. Philos Trans R Soc Lond Ser A Contain Pap Math Phys Character 228:377–420

    Article  Google Scholar 

  40. Love AEH (1939) Boussinesq’s problem for a rigid cone. Q J Math 10:161–175

    Article  Google Scholar 

  41. Boussinesq J (1885) Applications des Potentiels a l’etude de equilibre dt du mouvement des solides elastiques. Gauthier-Villars, Paris

    Google Scholar 

  42. Harding JW, Sneddon IN (1945) The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch. Math Proc Cambridge Philos Soc 41:16–26

    Article  Google Scholar 

  43. Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57

    Article  Google Scholar 

  44. Hay JC, Bolshakov A, Pharr GM (1999) A critical examination of the fundamental relations used in the analysis of nanoindentation data. J Mater Res 14:2296–2305

    Article  Google Scholar 

  45. Malzbender J, de With G, den Toonder J (2000) The P-h2 relationship in indentation. J Mater Res 15:1209–1212

    Article  Google Scholar 

  46. Malzbender J (2002) Indentation load-displacement curve, plastic deformation, and energy. J Mater Res 17:502–511

    Article  Google Scholar 

  47. Sneddon IN (1951) Fourier transforms. McGraw-Hill Book Company, New York, pp 450–467

    Google Scholar 

  48. ISO (2015) ISO 14577-1:2015, Metallic materials—instrumented indentation test for hardness and materials parameters—part 1: test method. ISO, Geneva

    Google Scholar 

  49. Vanlandingham MR (2003) Review of instrumented indentation. J Res Nat Inst Stand Technol 108:249–265

    Article  Google Scholar 

  50. Sakharova NA, Fernandes JV, Antunes JM, Oliveira MC (2009) Comparison between Berkovich, Vickers and conical indentation tests: a three-dimensional numerical simulation study. Int J Solids Struct 46:1095–1104

    Article  Google Scholar 

  51. Zhang J, Sakai M (2004) Geometrical effect of pyramidal indenters on the elastoplastic contact behaviors of ceramics and metals. Mater Sci Eng A 381:62–70

    Article  Google Scholar 

  52. Field JS, Swain MV (1993) A simple predictive model for spherical indentation. J Mater Res 8:297–306

    Article  Google Scholar 

  53. Francis HA (1976) Phenomenological analysis of plastic spherical indentation. ASME J Eng Mater Technol 98:272–281

    Article  Google Scholar 

  54. Le MQ (2012) Material characterization by instrumented spherical indentation. Mech Mater 46:42–56

    Article  Google Scholar 

  55. Riester L, Blau PJ, Lara-Curzio E, Breder K (2000) Nanoindentation with a Knoop indenter. Thin Solid Films 377:635–639

    Article  Google Scholar 

  56. Riester L, Bell TJ, Fischer-Cripps AC (2001) Analysis of depth-sensing indentation tests with a Knoop indenter. J Mater Res 16:1660–1667

    Article  Google Scholar 

  57. Bolshakov A, Pharr GM (1998) Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J Mater Res 13:1049–1058

    Article  Google Scholar 

  58. Begley MR, Evans AG, Hutchinson JW (1999) spherical impression of thin elastic films on elastic–plastic substrates. Int J Solids Struct 36:2773–2788

    Article  Google Scholar 

  59. Gamonpilas C, Busso EP (2004) On the effect of substrate properties on the indentation behaviour of coated systems. Mater Sci Eng A 380:52–61

    Article  Google Scholar 

  60. Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S (2003) Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater 51:5159–5172

    Article  Google Scholar 

  61. Chen J, Lu L, Lu K (2006) Hardness and strain rate sensitivity of nanocrystalline Cu. Scripta Mater 54:1913–1918

    Article  Google Scholar 

  62. Maier V, Durst K, Mueller J, Backes B, Höppel HW, Göken M (2011) Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J Mater Res 26:1421–1430

    Article  Google Scholar 

  63. Misra RD, Zhang Z, Jia Z, Venkatsurya PK, Somani MC, Karjalainen LP (2012) Nanoscale deformation experiments on the strain rate sensitivity of phase reversion induced nanograined/ultrafine-grained austenitic stainless steels and comparison with the coarse-grained counterpart. Mater Sci Eng A 548:161–174

    Article  Google Scholar 

  64. Lorenz D, Zeckzer A, Hilpert U, Grau P, Johansen H, Leipner HS (2003) Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Physical Rev B 67(172101):1–4

    Google Scholar 

  65. Durst K, Backes B, Franke O, Göken M (2006) Indentation size effect in metallic materials: modeling strength from pop-into macroscopic hardness using geometrically necessary dislocations. Acta Mater 54:2547–2555

    Article  Google Scholar 

  66. Cheng YT, Cheng CM (2004) Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng R Rep 44:91–150

    Article  Google Scholar 

  67. Cheng CM, Cheng YT (1999) Can stress–strain relationships be obtained from indentation curves using conical and pyramidal indenters”. J Mater Res 14:3467–3473

    Article  Google Scholar 

  68. Capehart TW, Cheng YT (2003) Determining constitutive models from conical indentation: sensitivity analysis. J Mater Res 18:827–832

    Article  Google Scholar 

  69. Ogasawara N, Chiba N, Chen X (2005) Representative strain of indentation analysis. J Mater Res 20:2225–2234

    Article  Google Scholar 

  70. Huber N, Tsagrakis I, Tsakmakis C (2000) Determination of constitutive properties of thin metallic films on substrates by spherical indentation using neural networks. Int J Solids Struct 37:6499–6516

    Article  Google Scholar 

  71. Kang JJ, Becker AA, Sun W (2011) A combined dimensional analysis and optimization approach for determining elastic-plastic properties from indentation tests. J Strain Anal Eng Des 46:749–759

    Article  Google Scholar 

  72. Atkins AG, Tabor D (1965) Plastic indentation in metals with cones. J Mech Phys Solids 13:149–164

    Article  Google Scholar 

  73. Antunes JM, Fernandes JV, Menezes LF, Chaparro BM (2007) A new approach for reverse analyses in depth-sensing indentation using numerical simulation. Acta Mater 55:69–81

    Article  Google Scholar 

  74. Tunvisut K, O’Dowd NP, Busso EP (2000) Use of scaling functions to determine mechanical properties of thin coatings from microindentation tests. Int J Solids Struct 38:335–351

    Article  Google Scholar 

  75. ISO (2008) NPR-ISO/TR 29381, Metallic materials—measurement of mechanical properties by an instrumented indentation test—indentation tensile properties. ISO, Geneva

    Google Scholar 

  76. Huber N, Tsakmakis C (1999) Determination of constitutive properties from spherical indentation data using neural networks. Part ii: plasticity with nonlinear isotropic and kinematic hardening. J Mech Phys Solids 47:1589–1607

    Article  Google Scholar 

  77. Chen X, Ogasawara N, Zhao M, Chiba N (2007) On the uniqueness of measuring elastoplastic properties from indentation: the indistinguishable mystical materials. J Mech Phys Solids 55:1618–1660

    Article  Google Scholar 

  78. Moussa C, Hernot X, Bartier O, Delattre G, Mauvoisin G (2014) Evaluation of the tensile properties of a material through spherical indentation: definition of an average representative strain and a confidence domain. J Mater Sci 49:592–603. doi:10.1007/s10853-013-7739-1

    Article  Google Scholar 

  79. ISO (2007) ISO 14577-4:2016 Metallic materials—instrumented indentation test for hardness and materials parameters—part 4: test method for metallic and non-metallic coatings. ISO, Geneva

    Google Scholar 

  80. Li H, Bradt RC (1993) The microhardness indentation load/size effect in rutile and cassiterite single crystals. J Mater Sci 28:917–926. doi:10.1007/BF00400874

    Article  Google Scholar 

  81. Chicot D, Gil L, Silva K, Roudet F, Puchi-Cabrera ES, Staia MH, Teer DG (2010) Thin film hardness determination using indentation loading curve modelling. Thin Solid Films 518:5565–5571

    Article  Google Scholar 

  82. Sun Y, Bell T, Zheng S (1995) Finite element analysis of the critical ratio of coating thickness to indentation depth for coating property measurements by nanoindentation. Thin Solid Films 258:198–204

    Article  Google Scholar 

  83. Knapp JA, Follstaedt DM, Barbour JC, Myers SM (1997) Finite element modeling of nanoindentation for determining the mechanical properties of implanted layers and thin films. Nucl Instrum Methods Phys Res, Sect B 127–128:935–939

    Article  Google Scholar 

  84. Knapp JA, Follstaedt DM, Myers SM, Barbour JC, Friedmann TA, Ager JW, Monteiro OR, Brown IG (1998) Finite element modeling of nanoindentation for evaluating mechanical properties of MEMS materials. Surf Coat Technol 103–104:268–275

    Article  Google Scholar 

  85. Ma DJ, Xu KW, He JW (1998) Numerical simulation for determining the mechanical properties of thin metal films using depth-sensing indentation technique. Thin Solid Films 323:183–187

    Article  Google Scholar 

  86. Lichinchi M, Lenardi C, Haupt J, Vitali R (1998) Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films 312:240–248

    Article  Google Scholar 

  87. Tang K (1999) Determination of coating mechanical properties using spherical indenters. Thin Solid Films 355–356:263–269

    Article  Google Scholar 

  88. Panich N, Sun Y (2004) Effect of penetration depth on indentation response of soft coatings on hard substrates: a finite element analysis. Surf Coat Technol 182:342–350

    Article  Google Scholar 

  89. Xu Z, Rowcliffe D (2004) Finite element analysis of substrate effects on indentation behaviour of thin films. Thin Solid Films 447–448:399–405

    Article  Google Scholar 

  90. Tunvisut K, Busso EP, O’Dowd NP (2002) Determination of the mechanical properties of metallic thin films and substrates from indentation tests. Philos Mag A 82:2013–2029

    Article  Google Scholar 

  91. Chudoba T, Schwarzer N, Richter F (1999) New possibilities of mechanical surface characterization with spherical indenters by comparison of experimental and theoretical results. Thin Solid Films 355:284–289

    Article  Google Scholar 

  92. Chudoba T, Schwarzer N, Richter F (2000) Determination of elastic properties of thin films by indentation measurements with a spherical indenter. Surf Coat Technol 127:9–17

    Article  Google Scholar 

  93. Chudoba T, Schwarzer N, Richter F, Beck U (2000) Determination of mechanical film properties of a bilayer system due to elastic indentation measurements with a spherical indenter. Thin Solid Films 377–378:366–372

    Article  Google Scholar 

  94. Schwarzer N, Whittling M, Swain M, Richter F (1995) The analytical solution of the contact problem of spherical indenters on layered materials: application for the investigation of tin films on silicon. Thin Solid Films 270:371–375

    Article  Google Scholar 

  95. Schwarzer N, Richter F, Hecht G (1999) The elastic field in a coated half-space under hertzian pressure distribution. Surf Coat Technol 114:292–303

    Article  Google Scholar 

  96. Schwarzer N, Chudoba T, Billep D, Richter F (1999) Investigation of coating substrate compounds using inclined spherical indentation. Surf Coat Technol 116–119:244–252

    Article  Google Scholar 

  97. Li JF, Wang XY, Liao H, Ding CX, Coddet C (2004) Indentation analysis of plasma-sprayed Cr3C2-NiCr coatings. J Mater Sci 39:7111–7114. doi:10.1023/B:JMSC.0000047561.79036.82

    Article  Google Scholar 

  98. Shiwa M, Weppelmann E, Munz D, Swain MV, Kishi T (1996) Acoustic emission and precision force-displacement observations of pointed and spherical indentation of silicon and TiN film on silicon. J Mater Sci 31:5985–5991. doi:10.1007/BF01152149

    Article  Google Scholar 

  99. Bressan JD, Tramontin A, Rosa C (2005) Modeling of nanoindentation of bulk and thin film by finite element method. Wear 258:115–122

    Article  Google Scholar 

  100. Saha R, Nix WD (2002) Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater 50:23–38

    Article  Google Scholar 

  101. Chen J, Bull SJ (2009) On the factors affecting the critical indenter penetration for measurement of coating hardness. Vacuum 83:911–920

    Article  Google Scholar 

  102. Sakharova NA, Fernandes JV, Oliveira MC, Antunes JM (2010) Influence of ductile interlayers on mechanical behaviour of hard coatings under depth-sensing indentation: a numerical study on TiAlN. J Mater Sci 45:3812–3823. doi:10.1007/s10853-010-4436-1

    Article  Google Scholar 

  103. Ghosh S, Das S, Bandyopadhyay TK, Bandyopadhyay PP, Chattopadhyay AB (2003) Indentation responses of plasma sprayed ceramic coatings. J Mater Sci 38:1565–1572. doi:10.1023/A:1022997203996

    Article  Google Scholar 

  104. Chiou SY, Gan D (2007) Interfacial mechanical properties of TiN coating on steels by indentation. J Mater Sci 42:2745–2752. doi:10.1007/s10853-006-1362-3

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) through EPSRC Centre for Doctoral Training in Innovative Metal Process (IMPaCT, www.impact.ac.uk) [Grant Number EPL016206].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adib A. Becker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, W., Becker, A.A. & Sun, W. Determination of material properties of thin films and coatings using indentation tests: a review. J Mater Sci 52, 12553–12573 (2017). https://doi.org/10.1007/s10853-017-1348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1348-3

Keywords

Navigation