Skip to main content
Log in

Interfacial mechanical properties of TiN coating on steels by indentation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The elastic theory of indentation on nitride films/steel systems showed distribution of stresses (shear stress, radial stress and circumferential stress) near the interface and in the film. The difference in values for each stress along the distance to the load center increased with increasing Poisson’s ratios of steels. The shear stresses (σrz) had the maximum value at a distance to the load center and the difference became more significant with increasing Poisson’s ratios of steel substrates (from 0.2–0.3 of Poisson’s ratio for high-speed steels to 0.3–0.35 for stainless steels), which accounted for the large amount of cracks inside the indent cavity of nitride films/stainless steel in spite of the smoothness outside the cavity. The calculation of σr and σz showed that the differences in nitride films/steel stress increased with increasing Poisson’s ratios of steels, which also facilitated the formation of ring cracks in the film of nitride films/stainless steel composite. Indentation examination revealed the large amount of cracks inside the indent cavity of nitride film/stainless steel but smooth surface outside the cavity. These were formed under the high sinusoidal shear stress and circumferential radial stress due to the higher Poisson’s ratio of stainless steel and the plastic deformation due to the lower yield stress of stainless steel (SS), which induced more local residual stresses, whereas some cracks or spalling observed around the cavity and no cracks inside the cavity were attributed to the edge effect when the conical indenter strained the surface downward for nitride film/high-speed steel (HSS) system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lawn BR, Swain MV (1975) J Mater Sci 10:113

    Article  CAS  Google Scholar 

  2. Lawn BR, Evans AG, Chantikul P (1979) J Mater Sci 14:2225

    Article  Google Scholar 

  3. Lawn BR, Evan AG, Marshall DB (1980) J Am Ceram Soc 63:574

    Article  CAS  Google Scholar 

  4. Marshall DB, Lawn BR, Evans AG (1982) J Am Ceram Soc 65:561

    Article  CAS  Google Scholar 

  5. Mehrotra K, Quinto DT (1985) J Vac Sci Technol A 3:2401

    Article  CAS  Google Scholar 

  6. Gruninger MF, Lawn BR, Farabaugh EN (1987) J Am Ceram Soc 70:344

    Article  CAS  Google Scholar 

  7. Hu MS, Thouless MD, Evans AG (1988) Acta Metall 36:130

    Article  Google Scholar 

  8. Sebastian S, Biswas SK (1991) J Phys D Appl Phys 24:113

    Article  Google Scholar 

  9. Diao DF, Kato K, Hokkirigawa K (1994) J Tribol 116:860

    Article  CAS  Google Scholar 

  10. Ogilvy JA (1993) J Phys D Appl Phys 26:2123

    Article  Google Scholar 

  11. Heinke W, Leyland A, Matthews A, Berg G, Friedrich C, Broszeit E (1995) Thin Solid Films 270:431

    Article  CAS  Google Scholar 

  12. Palmers J, Stappen MV, Haen JD, Olieslaeger MD, Stals LM, Uhlig G, Foller M, Haberlin E (1995) Surface Coating Technol 74–75:162

    Article  Google Scholar 

  13. Evans AG, Lu MC, Schmauder S, Ruhle M (1986) Acta Metall 34(8):1643

    Article  CAS  Google Scholar 

  14. Dalgleish BJ, Lu MC, Evans AG (1988) Acta Metall 36(8):2029

    Article  CAS  Google Scholar 

  15. Hu MS, Evans AG (1989) Acta Metall 37(3):917

    Article  CAS  Google Scholar 

  16. Michler J, Blank E (2001) Thin Solid Films 381:119

    Article  CAS  Google Scholar 

  17. Agrawal DC, Raj R (1989) Acta Metall 37(4):1265

    Article  CAS  Google Scholar 

  18. Shieu FS, Raj R, Sass SL (1990) Acta Metall 38(11):2215

    Article  CAS  Google Scholar 

  19. Aitshulin S, Rosen A (1993) J Mater Sci 28:3749

    Article  Google Scholar 

  20. Zhang S, Zhu W (1993) J Mater Process Technol 39:165

    Article  Google Scholar 

  21. Kohayashi A (2000) Surface Coating Technol 132:152

    Article  Google Scholar 

  22. Olivo CT (1987) In: Machine tool technology and manufacturing process. Albany, p 536

  23. Drory MD, Thouless MD, Evans AG (1988) Acta Metall 36(8):2019

    Article  CAS  Google Scholar 

  24. Thouless MD, Evans AG, Ashby MF, Hutchinson JW (1987) Acta Metall 35:1333

    Article  CAS  Google Scholar 

  25. Rother B, Dietrich DA (1994) Thin Solid Films 250:81

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Yung Chiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiou, SY., Gan, D. Interfacial mechanical properties of TiN coating on steels by indentation. J Mater Sci 42, 2745–2752 (2007). https://doi.org/10.1007/s10853-006-1362-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1362-3

Keywords

Navigation