Skip to main content
Log in

Synthesis, characterization, and ammonia gas sensing properties of Co3O4@CuO nanochains

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The Co3O4@CuO composite nanochains (CCNCs) were fabricated by electrospinning approach and controlled annealing route. The formation of nanochains was attributed to the interactions between N,N-Dimethylformamide and metal ions (Cu2+ or Co2+) acted as a cross-linking point or a bridge among the entangled polyvinylpyrrolidone (PVP) chains. The calcined samples were composed of porous single-crystal CuO particles (Ps), the size of which was 100–300 nm, and smaller p-type Co3O4 nanoparticles (NPs) on the surface of Ps, which was characterized by XRD, FT-IR, RAMAN, XPS, BET, SEM, and TEM techniques. The electrical properties of the samples and the response to ammonia gas at room temperature (RT) have been investigated. The highest sensing response was up to 5.72 for 100 ppm NH3 with a fast response time of 1.3 s, which was over 4.6 times higher than that of pristine CuO at RT, and the lowest detection limit was down to 1 ppm. In addition, the NH3 gas sensing mechanism of CCNC-2 (Cu:Co molar ratio of 5:2) was also discussed. These results indicated that the Co3O4@CuO composite nanochains were promising candidates for reliable high-performance gas sensors at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Scheme 2
Figure 5
Scheme 3
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Singh I, Bedi RK (2011) Influence of pH on the synthesis and characterization of CuO powder for thick film room-temperature NH3 gas sensor. J Mater Sci 46:5568–5580. doi:10.1007/s10853-011-5507-7

    Article  Google Scholar 

  2. Chang QF, Zhao K, Chen X, Li MQ, Liu JH (2008) Preparation of gold/polyaniline/multiwall carbon nanotube nanocomposites and application in ammonia gas detection. J Mater Sci 43:5861–5866. doi:10.1007/s10853-008-2827-3

    Article  Google Scholar 

  3. Xiao B, Li YC, Yu XF, Cheng JB (2016) MXenes: reusable materials for NH3 sensor or capturer by controlling the charge injection. Sens Actuators B 235:103–109

    Article  Google Scholar 

  4. Xu S, Kan K, Yang Y, Jiang C, Gao J, Jing LQ, Shen PK, Li L, Shi KY (2015) Enhanced NH3 gas sensing performance based on electrospun alkaline-earth metals composited SnO2 nanofibers. J Alloys Compd 618:240–247. doi:10.1016/j.jallcom.2014.08.153

    Article  Google Scholar 

  5. Yoo KP, Kwon KH, Min NK, Lee MJ, Lee CJ (2009) Effects of O2 plasma treatment on NH3 sensing characteristics of multiwall carbon nanotube/polyaniline composite films. Sens Actuators B 143:333–340

    Article  Google Scholar 

  6. Tang YL, Li ZJ, Ma JY, Guo YJ, Fu YQ, Zu XT (2014) Ammonia gas sensors based on ZnO/SiO2 bi-layer nanofilms on ST-cut quartz surface acoustic wave devices. Sens Actuators B 201:114–121

    Article  Google Scholar 

  7. Wang LL, Lou Z, Zhang R, Zhou TT, Deng JN, Zhang T (2016) Hybrid Co3O4/SnO2 core-shell nanospheres as real-time rapid-response sensors for ammonia gas. ACS Appl Mater Interfaces 8:6539–6545. doi:10.1021/acsami.6b00305

    Article  Google Scholar 

  8. Qi Q, Wang PP, Zhao J, Feng LL, Zhou LJ, Xuan LF, Liu YP, Li GD (2014) SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties. Sens Actuators B 194:440–446

    Article  Google Scholar 

  9. Leng JY, Xu XJ, Lv N, Fan HT, Zhang T (2011) Synthesis and gas-sensing characteristics of WO3 nanofibers via electrospinning. J Colloid Interface Sci 356:54–57

    Article  Google Scholar 

  10. Zou Y, Li Y, Guo Y, Zhou Q, An D (2012) Ultrasound-assisted synthesis of CuO nanostructures templated by cotton fibers. Mater Res Bull 47:3135–3140

    Article  Google Scholar 

  11. He L, Jia Y, Meng F, Li M, Liu J (2009) Development of sensors based on CuO-doped SnO2 hollow spheres for ppb level H2S gas sensing. J Mater Sci 44:4326–4333. doi:10.1007/s10853-009-3645-y

    Article  Google Scholar 

  12. Chapelle A, Barnabé A, Presmanes L, Tailhades P (2013) Copper and iron based thin film nanocomposites prepared by radio-frequency sputtering. Part II: elaboration and characterization of oxide/oxide thin film nanocomposites using controlled ex situ oxidation process. J Mater Sci 48:3304–3314. doi:10.1007/s10853-012-7116-5

    Article  Google Scholar 

  13. Zheng YL, Mao DS, Sun SS, Fu GY (2016) Solvothermal synthesis in ethylene glycol and catalytic activity for CO oxidation of CuO/CeO2 catalysts. J Mater Sci 51:917–925. doi:10.1007/s10853-015-9420-3

    Article  Google Scholar 

  14. Bhuvaneshwari S, Gopalakrishnan N (2016) Hydrothermally synthesized copper oxide (CuO) superstructures for ammonia sensing. J Colloid Interface Sci 480:76–84

    Article  Google Scholar 

  15. Bhuvaneshwari S, Gopalakrishnan N (2016) Enhanced ammonia sensing characteristics of Cr doped CuO Nanoboats. J Alloys Compd 654:202–208

    Article  Google Scholar 

  16. Shaalan NM, Rashad M, Moharram AH, Abdel-Rahim MA (2016) Promising methane gas sensor synthesized by microwave-assisted Co3O4 nanoparticles. Mater Sci Semicond Process 46:1–5

    Article  Google Scholar 

  17. Balouria V, Samanta S, Singh A, Debnath AK, Mahajan A, Bedi RK, Aswal DK, Gupt SK (2013) Chemiresistive gas sensing properties of nanocrystalline Co3O4 thin films. Sens Actuators B 176:38–45

    Article  Google Scholar 

  18. Zhao XD, Ji HM, Jia QQ, Wang MJ (2015) A nanoscale Co3O4-WO3 p-n junction sensor with enhanced acetone responsivity. J Mater Sci 26:8217–8223. doi:10.1007/s10854-015-3484-3

    Google Scholar 

  19. Liu X, Zhang J, Wu S, Yang D, Liu P, Zhang H, Wang S, Yao X, Zhu G, Zhao H (2012) Single crystal α-Fe2O3 with exposed 104 facets for high performance gas sensor applications. RSC Adv 2:6178–6184

    Article  Google Scholar 

  20. Shao F, Hernández-Ramírez F, Prades JD, Fàbrega C, Andreu T, Morante JR (2014) Copper (II) oxide nanowires for p-type conductometric NH3 sensing. Appl Surf Sci 311:177–181

    Article  Google Scholar 

  21. Balamurugan C, Lee DW (2014) A selective NH3 gas sensor based on mesoporous p-type NiV2O6 semiconducting nanorods synthesized using solution method. Sens Actuators B 192:414–422

    Article  Google Scholar 

  22. Deng JA, Zhang R, Wang LL, Lou Z, Zhang T (2015) Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas. Sens Actuators B 209:449–455

    Article  Google Scholar 

  23. Xu S, Gao J, Wang LL, Kan K, Xie Y, Shen PK, Li L, Shi KY (2015) Role of the heterojunctions in In2O3-composite SnO2 nanorod sensors and their remarkable gas-sensing performance for NOx at room temperature. Nanoscale 7:14643–14651

    Article  Google Scholar 

  24. Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R (2012) Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Adv Powder Technol 217:330–339

    Article  Google Scholar 

  25. Kumar M, Kumara Swamy BE (2016) Role of heat on the development of electrochemical sensors on bare and modified Co3O4/CuO composite nanopowder carbon paste electrodes. Mater Sci Eng C 58:142–152

    Article  Google Scholar 

  26. Tian ZY, Vieker H, Mountapmbeme Kouotoub P, Beyerc A (2015) In situ characterization of Cu-Co oxides for catalytic application. Faraday Discuss 177:249–262

    Article  Google Scholar 

  27. Mazhar ME, Faglia G, Comini E, Zappa D, Baratto C, Sberveglieri G (2016) Kelvin probe as an effective tool to develop sensitive p-type CuO gas sensors. Sens Actuators B 222:1257–1263

    Article  Google Scholar 

  28. Mohan Kumar G, Ilanchezhiyan P, Madhan Kumar A, Shabi TS, Tamil Selvan S, Suresh S, Yuldashev SU, Kang TW (2015) Chemically-derived CuO/In2O3-based nanocomposite for diode applications. CrystEngComm 17:5932–5939

    Article  Google Scholar 

  29. George G, Elias L, Hegdeb AC, Anandhan S (2015) Morphological and structural characterisation of sol-gel electrospun Co3O4 nanofibres and their electro-catalytic behavior. RSC Adv 5:40940–40945

    Article  Google Scholar 

  30. Amri A, Duan XF, Yin CY, Jiang ZT, Rahman MM, Pryor T (2013) Solar absorptance of copper–cobalt oxide thin film coatings with nano-size, grain-like morphology: optimization and synchrotron radiation XPS studies. Appl Surf Sci 275:127–135

    Article  Google Scholar 

  31. Yamada Y, Yano K, Xu Q, Fukuzumi S (2010) Cu/Co3O4 nanoparticles as catalysts for hydrogen evolution from ammonia borane by hydrolysis. J Phys Chem C 114:16456–16462

    Article  Google Scholar 

  32. Liu ZG, Chai SH, Binder A, Li YY, Ji LT, Dai S (2013) Influence of calcination temperature on the structure and catalytic performance of CuOx-CoOy-CeO2 ternary mixed oxide for CO oxidation. Appl Catal A 451:282–288

    Article  Google Scholar 

  33. Svintsitskiy DA, Kardash TY, Stonkus OA, Slavinskaya EM, Stadnichenko AI, Koscheev SV, Chupakhin AP, Boronin AI (2013) In situ XRD, XPS, TEM, and TPR study of highly active in CO oxidation CuO nanopowders. J Phys Chem C 117:14588–14599

    Article  Google Scholar 

  34. Kedia A, Kumar PS (2012) Precursor-Driven nucleation and growth kinetics of gold nanostars. J Phys Chem C 116:1679–1686

    Article  Google Scholar 

  35. Hao CW, Zhao Y, Dong X, Zhou Y, Xu YZ, Wang DJ, Lai GQ, Jiang JX (2009) Anomalous rheological behavior of poly(1-vinyl-2-pyrrolidone) and CuCl2 in solution and their interactions in solid composites. Polym Int 58:906–911

    Article  Google Scholar 

  36. Hao CW, Zhao Y, Zhou Y, Zhou LJ, Xu YZ, Wang DJ, Xu DF (2007) Interactions between metal chlorides and poly(vinyl pyrrolidone) in concentrated solutions and solid-state films. J Polym Sci B 45:1589–1598

    Article  Google Scholar 

  37. Lee YH, Chang CJ, Kao CJ, Dai CA (2010) In-situ template synthesis of a polymer/semiconductor nanohybrid using amphiphilic conducting block copolymers. Langmuir 26:4196–4206

    Article  Google Scholar 

  38. Gao J, Wang LL, Kan K, Xu S, Jing LQ, Liu SQ, Shen PK, Li L, Shi KY (2014) One-step synthesis of mesoporous Al2O3-In2O3 nanofibers with remarkable gas-sensing performance to NOx at room temperature. J Mater Chem A 2:949–956. doi:10.1039/c3ta13943c

    Article  Google Scholar 

  39. Song WZ, Wu HY, Wang JC, Lin YF, Song JB, Xie Y, Li L, Shi KY (2015) Facile synthesis of hierarchical CuO microspheres and their gas sensing properties for NOx at room temperature. Aust J Chem 68:1569–1576. doi:10.1071/CH15126

    Article  Google Scholar 

  40. Ebadi M, Mat-Teridi MA, Sulaiman MY, Basirun WJ, Asim N, Ludin NA, Ibrahim MA, Sopian K (2015) Electrodeposited p-type Co3O4 with high photoelectrochemical performance in aqueous medium. RSC Adv 5:36820–36827

    Article  Google Scholar 

  41. Gao J, Wu HY, Zhou J, Yao LY, Zhang G, Xu S, Xie Y, Li L, Shi KY (2016) Mesoporous In2O3 nanocrystals: synthesis, characterization and NOx gas sensor at room temperature. New J Chem 40:1306–1311

    Article  Google Scholar 

  42. Li XW, Feng W, Xiao Y, Sun P, Hu XL, Shimanoe K, Lu GY, Yamazoe N (2014) Hollow zinc oxide microspheres functionalized by Au nanoparticles for gas sensors. RSC Adv 4:28005–28010

    Article  Google Scholar 

  43. Epifani M, Prades JD, Comini E, Cirera A, Siciliano P, Faglia G, Morante JR (2009) Chemoresistive sensing of light alkanes with SnO2 nanocrystals: a DFT-based insight. Phys Chem Chem Phys 11:3634–3639

    Article  Google Scholar 

  44. Fu XQ, Liu JY, Wan YT, Zhang XM, Meng FL, Liu JH (2012) Preparation of a leaf-like CdS micro-nanostructure and its enhanced gas-sensing properties for detecting volatile organic compounds. J Mater Chem 22:17782–17791

    Article  Google Scholar 

  45. Kumar N, Srivastava AK, Nath R, Gupta BK, Varma GD (2014) Probing the highly efficient room temperature ammonia gas sensing properties of a luminescent ZnO nanowire array prepared via an AAO-assisted template route. Dalton Trans 43:5713–5720

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Union Funds of the National Natural Science Foundation of China (No. U1034003), the Program for Innovative Research Team in Chinese Universities (IRT1237), the National Natural Science Foundation of China (No. 51273089), and Scientific Research Fund of Heilongjiang Provincial Education Department (Nos. 12521421, RC2012XK018005, PEBM201502).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Li or Keying Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1063 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Zhang, J., Rehman, A.U. et al. Synthesis, characterization, and ammonia gas sensing properties of Co3O4@CuO nanochains. J Mater Sci 52, 3757–3770 (2017). https://doi.org/10.1007/s10853-016-0561-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0561-9

Keywords

Navigation