Skip to main content
Log in

Copper and iron based thin film nanocomposites prepared by radio-frequency sputtering. Part II: elaboration and characterization of oxide/oxide thin film nanocomposites using controlled ex-situ oxidation process

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

CuO/CuFe2O4 thin films were obtained on glass substrate by ex situ oxidation in air at 450 °C for 12 h from various starting metal/oxide nanocomposites by radio-frequency sputtering technique. The structure and microstructure of the films were examined using grazing incidence X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopies, X-ray photoelectron spectroscopy, and electron probe microanalysis. These studies reveal that a self-organized bi-layered microstructure with CuO (surface layer) and CuFe2O4 (heart layer) was systematically obtained. Due to the porosity of the upper layer formed during annealing, an increase in total thickness of the film was observed and is directly correlated to the oxidation of the metallic copper content initially present in the as-deposited sample. A self-organization in two stacked layers CuO/CuFe2O4 with various void fractions ranging from 0 to 41 % can be obtained by controlling the as-deposited elaboration step described in the part I of this paper. The highest porosities were observed for films deposited at low argon pressure and low target-to-substrate distance. Due to their specific self-organization in p- and n-type layers associated with their high porosity, such structured films exhibited the best electrical sensitivity to CO2 gas sensing. The obtained results demonstrated the importance of microstructure control to improve the response of sensing layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fernandez-Garcıa M, Martınez-Arias A, Hanson JC, Rodriguez JA (2004) Chem Rev 104:4063

    Article  Google Scholar 

  2. Wei S, Wang Q, Zhu J, Sun L, Lin H, Guo Z (2011) Nanoscale 3:4474

    Article  CAS  Google Scholar 

  3. Sanchez C, Rozes L, Ribot F, Laberty-Robert C, Grosso D, Sassoye C, Boissiere C, Nicole L (2010) C R Chimie 13:3

    Article  CAS  Google Scholar 

  4. Simon Q, Barreca D, Gasparotto A, Maccato C, Montini T, Gombac V, Fornasiero P, Lebedev OI, Turner S, Van Tendeloo G (2012) J Mater Chem 22:11739

    Article  CAS  Google Scholar 

  5. Ishihara T, Kometani K, Hasida M, Takita Y (1991) J Electrochem Soc 138:173

    Article  CAS  Google Scholar 

  6. Barreca D, Comini E, Gasparotto E, Maccato C, Sadad C, Sberveglieri G, Tondello E (2009) Sens Actuators B 141:270

    Article  Google Scholar 

  7. Kim YS, Hwang IS, Kim SJ, Lee CY, Lee JH (2008) Sens Actuators B 135:298

    Article  Google Scholar 

  8. Ishihara T, Kometani K, Nishi Y, Takita Y (1995) Sens Actuator B 28:49

    Article  Google Scholar 

  9. Haeusler A, Meyer JU (1996) Sens Actuators B 34:388

    Article  Google Scholar 

  10. Xu JC, Hunter GW, Lukco D, Liu CC, Ward BJ (2009) IEEE Sens J 9:235

    Article  CAS  Google Scholar 

  11. Chapelle A, Oudrhiri-Hassani F, Presmanes L, Barnabé A, Tailhades P (2010) Appl Surf Sci 256:4715

    Article  CAS  Google Scholar 

  12. Ishihara T, Higuchi M, Takagi T, Ito M, Nishiguchia M, Takita Y (1998) J Mater Chem 8:2037

    Article  CAS  Google Scholar 

  13. Barnabé A, Chapelle A, Presmanes L, Tailhades P (2012) J Mater Sci. doi:10.1007/s10853-012-7123-6

  14. Liao B, Wei Q, Wang K, Liu Y (2001) Sens Actuators B 80:208

    Article  Google Scholar 

  15. O’Reilly M, Jiang X, Beechinor JT, Lynch S, Ni Dheasuna C, Patterson JC, Crean GM (1995) Appl Surf Sci 91:152

    Article  Google Scholar 

  16. Yakubi A, Tanaka S (2011) Mater Res Bull 46:2323

    Article  Google Scholar 

  17. Mugnier E, Barnabé A, Presmanes L, Tailhades P (2008) Thin Solid Films 516:1453

    Article  CAS  Google Scholar 

  18. Prisedsky VV, Vinogradov VM (2004) J Solid State Chem 177:4258

    Article  CAS  Google Scholar 

  19. Egger K, Feitknecht W (1962) Helv Chim Acta 65:2043

    Google Scholar 

  20. Tailhades P, Gillot B, Rousset A (1997) J Phys IV 7:249

    Google Scholar 

  21. Khvan AV, Fabrichnaya OB, Savinykh G, Adam R, Seifert HJ (2011) J Phase Equilib Diff 32:498

    Article  CAS  Google Scholar 

  22. Kenfack F, Langbein H (2004) Cryst Res Technol 39:1070

    Article  CAS  Google Scholar 

  23. O’Keeffe M, Stone FS (1962) Roy Soc Lond 267:501

    Article  Google Scholar 

  24. Li J, Mayer JW (1991) J Appl Phys 70:2820

    Article  CAS  Google Scholar 

  25. Gong YS, Lee C, Yang CK (1995) J Appl Phys 77:5422

    Article  CAS  Google Scholar 

  26. Wallbank B, Main IG, Johnson CE (1974) J Electron Spectrosc 5:259

    Article  CAS  Google Scholar 

  27. Kim KS (1974) J Electron Spectrosc 3:217

    Article  CAS  Google Scholar 

  28. Watts JF, Wolstenholme J (2003) An introduction to surface analysis by XPS and AES, Chapt 3.2.5. Wiley, London

  29. Pouchou JL, Pichoir F (1991) STRATAgem thin film analysis software and thickness determination. http://www.samx.com/microanalysis/products/stratagem_us.html

  30. Benko F, Koffyberg F (1987) J Phys Chem Solids 48:431

    Article  CAS  Google Scholar 

  31. Mugnier E, Pasquet I, Barnabé A, Presmanes L, Bonningue C, Tailhades P (2005) Thin Solid Films 493:49

    Article  CAS  Google Scholar 

  32. Rioult F, Pijolat M, Valdivieso F, Prin-Lamaze MA (2006) J Am Ceram Soc 89:996

    Article  CAS  Google Scholar 

  33. Sakai G, Matsunaga N, Shimanoe K, Yamazoe N (2001) Sens Actuators B 80:125

    Article  Google Scholar 

  34. Baik NS, Sakai G, Shimanoe K, Miura N, Yamazoe N (2000) Sens Actuators B 65:97

    Article  Google Scholar 

  35. Shimizu Y, Maekawa T, Nakamura Y, Egashira M (1998) Sens Actuators B 46:163

    Article  Google Scholar 

  36. Seo MH, Yuasa M, Kida T, Huh JS, Shimanoe K, Yamazoe N (2009) Sens Actuators B 137:513

    Article  Google Scholar 

  37. Mahajan RP, Patankar KK, Kothale MB, Patil SA (2000) Bull Mater Sci 23:273

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Barnabé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapelle, A., Barnabé, A., Presmanes, L. et al. Copper and iron based thin film nanocomposites prepared by radio-frequency sputtering. Part II: elaboration and characterization of oxide/oxide thin film nanocomposites using controlled ex-situ oxidation process. J Mater Sci 48, 3304–3314 (2013). https://doi.org/10.1007/s10853-012-7116-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7116-5

Keywords

Navigation